Finding and sharing solutions to

protect our soils

Europe's soil research hub

Who is RECARE-Hub for?

Farmers & Forestry

RECARE-Hub contains the latest information on preventing soil threats, and cost-benefit analysis on proven remediation techniques.

Industry

Discover innovative sustainable land management measures that can combat threats to key soil functions.

Policy makers

Find out more about land care strategies relevant to your region and our integrated assessment of existing soil related policy.

Researchers

Access a wealth of European research data on soil threats and the efficacy of land care strategies.

Teachers & environmentalists

Whether you're a teacher or a concerned environmentalist, find out why Europe's soils are under threat and what researchers are doing to help combat the problems.

Resources designed for you

 

The soil that underpins Europe's agricultural systems faces numerous threats.

If you are interested in learning about specific soil threats, you can explore the individual threats below. If you want detailed guidance for assessing soil degradation or learning about management measures to prevent and remediate against soil degradation, you might want to head straight over to RECARE's resources.

 

RESOURCES

Case Study Experiment - Mitigating soil erosion in agricultural land

The Spanish Case Study tested the impact of mulching with straw on soil and water losses.
Strawmulch Mulch experiment
Straw mulching experiment to prevent soil erosion

 Final Results

 The main results from the experiments were:

  • The control (bare) plots under traditional tillage show a runoff yield of 46.4 mm year-1 out of the 413.9 mm of rainfall. The straw mulch covered
    plots deliver 28.5 mm.
  • The use of straw reduces the water losses from 11.5 to 7.5 % of the rainfall.
  • The straw mulch reduced soil erosion by one order of magnitude: from 11.4 to 1.9 Mg ha-1 y-1.
  • The cost of the use of straw mulch was 145 € per ha.
  • Straw mulch improved soil moisture, soil water infiltration, reduced runoff and then the risk of floods and covered the soil.                                            

   RunoffResultsRunoff (mm)SoilErosionResultsSoil Erosion (Mg ha-1y-1)

Further details about this experiment can be found in the fact sheet HERE and in the project report HERE

Scientific articles

Alicia Morugán-Coronado, Fuensanta García-Orenes, Artemi Cerdà (2015) Changes in soil microbial activity and physiochemical properties in agricultural soils in Eastern Spain. Spanish Journal of Soil Science Vol 5, No. 3 DOI: 10.3232/SJSS.2015.V5.N3.02

Prosdocimi M, Burguet M, Di Prima S, Sofia G, Terol Esparza E, Rodrigo Comino J, Cerdà A, Tarolli P (2017) Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Published in: Science of the Total Environment, 2017, 574, 204-215 http://www.sciencedirect.com/science/article/pii/S0048969716319532

Prosdocimi, M., Tarolli, P., Cerdà, A (2016) Mulching practices for reducing soil water erosion: A review. Published in: Earth-Science Reviews, 2016, 161: 191–203 http://www.sciencedirect.com/science/article/pii/S0012825216302264

Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C. (2016) The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency – high magnitude simulated rainfall events. Published in: Soil Res, 2016, 54, 2, 154-165 http://www.publish.csiro.au/sr/sr15092

Keesstra, S., P. Pereira, A. Novara, E. C. Brevik, C. Azorin-Molina, L. Parras-Alcántara, A. Jordán, and A. Cerdà (2016) Effects of Soil Management Techniques on Soil Water Erosion in Apricot Orchards. Published in: Science of the Total Environment, 2016.  551-552: 357- 336 http://www.sciencedirect.com/science/article/pii/S0048969716301784 

Rodrigo Comino, J., T. Iserloh, T. Lassu, A. Cerdà, S. D. Keesstra, M. Prosdocimi, C. Brings, et al. (2016) Quantitative Comparison of Initial Soil Erosion Processes and Runoff Generation in Spanish and German Vineyards. Published in: Science of the Total Environment, 2016, 565: 1165-1174  http://www.sciencedirect.com/science/article/pii/S0048969716310932

Rodrigo Comino J, Iserloh T, Morvan X, Malam Issa O, Naisse C, Keesstra SD, Cerdà A, Prosdocimi M, Arnáez J, Lasanta T, Ramos MC, Marqués MJ, Ruiz Colmenero M, Bienes R, Ruiz Sinoga JD, Seeger M, Ries JB (2016) Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France. Published in: Hydrology, 2016, 3 (1), 6; http://www.mdpi.com/2306-5338/3/1/6/htm

Further information about the case study activities in Spanish can be found here

For more information about this RECARE experiment, please contact Artemi CerdaThis email address is being protected from spambots. You need JavaScript enabled to view it.

Geographical description

Canyoles

The Cànyoles river watershed is located in Eastern Spain. It is representative of the many changes suffered by Northern Mediterranean countries during the last fifty years: land abandonment in the mountainous terrain; population increase and urbanization in the lowland areas of the catchment; soil sealing due to urbanization; increase of chemical use in agriculture; and aquifer overexploitation. The parent material of the Cànyoles river watershed is mainly limestone, with intense agriculture in the bottom of the valleys and almost abandoned slopes, and has a mean annual rainfall > 500 mm.y-1.

The study area has a rugged terrain , which favors intense soil erosion. Mild temperatures characterize the climate in winter and hot summers (16 ºC mean annual temperature) are also characterized by recurrent droughts. The autumn thunderstorms are characterized by intense thunderstorms (< 100 mm.day-1).  In the past farmers used terraces to reduce soil losses but more recently with the development of large citrus farms these terraces have been removed and soil erosion has increased due to inappropriate land management practices.

Main soil threat

Soil erosion SpainThe Cànyoles river watershed is a typical Mediterranean landscape with rainfed agriculture that has been replaced by traditional irrigation systems (flooding) in the bottom of the valleys and by drip-irrigation systems on the sloping terrain. The traditional irrigation systems are millennia old, but the drip irrigation has only been established recently. The new drip-irrigation systems are triggering high erosion rates and soil degradation due to the lack of vegetation cover, the compaction of the soil and the lack of organic matter in soils due to intensive ploughing, herbicides and intense fertilization

The increases in soil erosion rates due to new citrus orchards on slopes, are being controlled by means of catch crops, but most of the farmers are not aware of the problem. Thus, this represents a social, economical and physical environmental problem. The use of vegetation cover is a positive cost-efficient treatment as farmers can be subsidized, especially those that are registered as organic farmers. There is a need to inform farmers, and to show them that a different land management option is available. This project must improve the exchange of knowledge between farmers and scientists.

One of constraints is the lack of appropriate agricultural machinery to move from ploughing to no-till practices. But the main constraint is to convince farmers that they can be environmental agents. The challenge is to find the funding/subsidies to encourage the farmer to move to more sustainable land management. Farmers, due to a tradition of clean soils (no plants, no stones... bare soil), like to keep the farm weed-free, and are reluctant to take up measures such as no-till. The project aims to improve the information exchange with farmers so that they can utilize effective new strategies to manage their farm (i.e. organic farming). This will require demonstrations and knowledge exchange with the farmers.

Other soil threats

The Cànyoles River watershed is also threatened by soil sealing of otherwise fertile lands due to urban expansion, increase of the number of secondary residences as well as transportation infrastructure. Soil biodiversity is inhibited due to the use of pesticides, herbicides and chemical fertilizers in chemically managed farms. The same agents are also a source of soil, air and water pollution. Soil organic matter is reduced due to tillage, lack of vegetation cover and lack of use of manure and compost that used to be the traditional fertilizers before the arrival of chemical farming. Soil compaction due to heavy farm machinery is becoming more important since farm expansion and mechanization.

fig71

Location and Digital Elevation Model (DEM) of the Cànyoles river watershed

Natural environment

Geology & Soils

The Case Study is in the border (fault) of the Iberian System and the Betic System which renders the region very tectonically active as signified by events such as the Earthquake of 1748 that caused damages to Xàtiva and destroyed the Montesa Castle. The large numbers of faults, associated with the main fault of the Montesa corridor, indicate an intense tectonic activity in the region. The tectonic uplift is affecting the integrity and continuity of the lithostratigraphic units and the faults bring in contact different lithostatigraphic units with different hydrogeological characteristics. Dolomicrites and dolomitic marls dominate the Limestones of the Cretaceous. Formations from the Tertiary (Neogen) are characterized by marls, and basins has undergone multidirectional extensional tectonic events which are found in the North and South of the region, with the valley covered with marls in the bottom. Quaternary materials are found covering the Limestone and Marls, and they are Pediment and slope deposits. The fluvial terraces are present but they are small remains due to the intense erosion as a consequence of the Uplift of the area and the incision of the rivers. There is also Gypsum and Keuper Clays from the Triasic that are found where the faults allow deeper material to reach the surface as diapirs. The main geological coverage of the basin includes Dolomites and Limestones (70%), and the Quaternary materials (1%) and Marls and Keuper Clays (29%), and the main soil types are Calcic cambisols and Eutric Fluvisols.

fig72

Parent materials (left) and Land Use (right) at the Cànyoles river watershed

Land Use

A dense forest of Quercus ilex covered the Cànyoles river watershed before the arrival of agriculture and grazing 6 millennia ago. The Iberians (500 BC) already used the land for grazing and agriculture, as the archaeological sites of Castellar de Meca and the La Bastida de Moixent show. Traditional Aleppo pine plantations (Pinus halepensis) were abandoned in the 60’s due to intense immigration. The recovery of the understory and the lack of maintenance resulted in the spread of wildfires and as a consequence the recovery of the Maquia and the removal of the Pinus halepensis.

Nowadays, the main land uses (agriculture, rangelands and urban) have been similar between 1986 (EU agreement) and 2005: around 75% of the land is rangelands, forest or meadows, meanwhile 22% is agricultural land. During this period, urban areas increased from 1.4 to 4.4%, which shows a dramatic increase in soil sealing. At a finer classification there is a clear shift towards cultivation of citrus and fruits and a reduction in olive trees and vineyards. The reduction of olives (from 9 to 4.75%) took place mainly due to the increase of citrus (from 6 to 9%). The main change in forestland took place due to the impact of the land abandonment and wildfires. The reduction of the meadows took place due to the loss of the grazing in the Case Study. This acute change of land use, in combination with grazing abandonment is currently resulting in greening of the mountainous terrain, and as a consequence, in forest fires which trigger intense soil erosion rates.
 

Land Uses [ha]198620051986-2005%
Forest 27,263 10,067 -17,196 -63.1
Olive 5,622 2,956 -2,666 -47.4
Meadows 10,637 6,889 -3,748 -35.2
Vineyards 4,057 2,918 -1,139 -28.0
Citrus 3,163 5,730 2,567 +81.2
Fruits 1,063 2,080 1,017 +95.7
Rangeland 9,483 28,793 19,310 +203.6
Urban 891 2,746 1,855 +308.2
Total 62,179 62,179   415

Climate

The climate at the Cànyoles River watershed is characterized by typical summer droughts and is classified as dry sub-humid according to UNCED (Paris Convention on Desertification, 1994). The Eastern part of the Iberian Peninsula has a typical Mediterranean dry climate with the rainy season taking place in autumn and spring and summer being the dry period - below. The mean annual rainfall ranges from close to 500 mm y-1 in the Massís del Caroig to 700 mm y-1 in the Xàtiva, which shows the clear control of the distance from the sea over precipitation. There is a general trend of a slight increase in precipitation (1 mm for the last 50 years) but the variability is very high as shown below. The mean annual temperature is also controlled by altitude and the distance from the sea. The Xàtiva meteorological station (103 m a.s.l.) registers 18oC as the mean annual temperature and the Enguera sites (320 m a.s.l.) 14oC.

 fig73

Temperature ranges from the 15.7 to 25.7oC during summer and from 8.7 to 12.6oC during winter. Mean annual temperature amplitudes from 6 to 14.7oC. The mean annual temperature is increasing which is mainly due to the increase in the mean minimum temperature (temperatures at night), and also the decreasing temperature variability amplitude. This has huge implications for the agricultural management and the change in the crops between the coast and inland.

Hydrogeology

Limestone is the main parent material and this is the key factor for the hydrology of the Case Study. The infiltration capacity of the soils developed on limestone and the high hydraulic conductivity of the thalwegs results in deep percolation and consecutively in limited surface runoff (Cerdà, 1996). The second key characteristic of the Case Study is the karst developed in the limestone area and the resulting karstic springs that contribute to the traditional flood irrigated agriculture. During the last 50 years, the development and expansion of new citrus plantations and subsequent growth of the irrigated land has resulted in the depletion of the aquifer and the reduction in spring discharge. As shown in Figure 7.4, the Riu dels Sants spring discharge is gradually lost due to the over-exploitation of the aquifer. This loss of flow has ecological, geomorphological, hydrological, as well as socioeconomic consequences, affecting a community of farmers that were using the water as the main resource for a millennium. This quickly sparked land abandonment, urban growth on traditional orchards and changes from flood irrigated to drip irrigated land in the traditional flood irrigated zone of the Cànyoles river watershed.

 fig74

Drivers and pressures

In Eastern Spain, the increase of the irrigation systems to produce vegetables and fruits at competitive prices is resulting in the depletion of the aquifers. In our research area, the farmers use more than 90% of water resources, being the use by industry minimal. The increase in water demand is maintained year after year as new plantations require irrigation to be viable. New plantations are using water and chemicals intensively, also depleting soil organic matter. As a consequence of soil erosion and pollution, water pollution with nitrates and other chemicals, landscape changes are being accelerated. The main drivers of this change have been the Common Agriculture Policy oriented at investments in new chemically managed farms, as well as investments coming from the construction, industry and tourism sectors. The arrival of new capital to agriculture (powered by the subsidies) contributed to the degradation of traditional rain-fed and flood irrigation systems and the development of new farms: larger, mechanized, and subsidized. The technification of the agriculture resulted in an increase in the production although a net reduction in cultivated area has been registered. This trend is very clear for the vineyard in Cànyoles river basin, where although total area is reducing wine production is increasing - see below.

Although soil erosion is mainly a consequence of agricultural intensity and ultimately caused by forest fire, agriculture has additional environmental impacts. The new land managements and the removal of the old traditional terraces are accelerating soil erosion. The overexploitation of the aquifers for irrigation is triggering a reduction in the water resources resulting in flows inadequate to sustain the traditional spring-supplied irrigation by flooding. This is resulting in a social and economic problem. Moreover, the new drip irrigation systems are reducing the number of ditches and most of the water now flows in pipes; as a consequence the biological diversity has been dramatically reduced. Also, natural groundwater recharge is being reduced by the lack of flooding. The expansion of drip irrigation serves as an alternative to the traditional flood irrigated orchards. As a consequence the traditional ditches are being removed and the flow of water is disappearing which results in the reduction of the flora and fauna diversity. The use of herbicides is also contributing to this loss of biodiversity as it causes the removal of most of the vegetation. It also results in a selection of the plants that tolerate the herbicides. The urbanization of the rural areas as a consequence of the expansion of the drip irrigation (each property needs an equipment storage space) results in a landscape of patchily distributed small low quality structures.

fig75

Extent and production of wine in the Cànyoles river watershed during the period of
intensification of the agriculture from 1977 till 2010 due to the Common Agriculture Policy

fig76

Soil organic matter in the soils of the study sites. Samples were collected in Summer 2012 at ten representative soils by land-use. Columns represents the average of 20 samples (left); Runoff coefficient (%) (4 plots per column) in the Cànyoles river watershed under rainfall simulation experiments of 1 hour at 66.1 mm h-1 in each plot (right).

 The monoculture of the citrus is developing into another problem as year after year they are covering more surfaces. The areas that due to the climate cannot be colonized by the citrus are being abandoned or transformed into vineyards. As the Case Study site of the Cànyoles river watershed is an old path between the coastal land and the central Iberian Peninsula the increase in roads and railway in the last two decades is increasing soil erosion in the construction sites. The expansion of the citrus plantations (irrigated) on traditional rain-fed agriculture areas is depleting the aquifer, and this results in a shortage of water in the old traditional flood irrigated orchards, transforming the irrigation system in a drip irrigated by aquifer pumped water, intensifying the risk of aquifer depletion.

There is also a general decrease in the organic matter of the soils under cultivation due to a lack of manure or compost application - above. Chemical fertilizers are the most important in use and abuse due to the subsidies and the good reputation they have among farmers. Catch crops, mulching and weeds are not used. As a consequence the depletion of the organic matter in the soil is a problem and it is necessary to find new strategies to maintain the soil fertility within the natural cycles.

Status of soil threat

Previous studies show that the problems of soil degradation in the Cànyoles Case Study area is mainly focused on the soil erosion, runoff generation and soil organic matter depletion, which contribute to desertification (Bodí et al., 2013; Cerdà 2007, 2009a, 2009b). Figure below shows characteristic signs of degradation in the Case Study.

fig77

View of the Case Study. Upper left: Castellar de Meca archaeological site, where intense use of the land by the Iberians has occurred, as the marks of the wheels show. Upper right: intense soil erosion on new chemically managed citrus plantation. Lower left: soil erosion in vineyards. Lower right: the consequences of the forest fire: a new maquia development and the reduction of the forests

 WOCAT Maps

Maps on the current state of land use, soil degradation and soil conservation in the case study area have been produced using the WOCAT (World Overview of Conservation Approaches and Technologies) methodology

The steps of this process are as follows:

1) The area to be mapped is divided into distinctive land use systems (LUS).
2) The team gathers the necessary data on soil degradation and conservation for each LUS using a standardised questionnaire, in close consultation with local land users, and supported where possible by remote sensing or field data.
3) For each LUS, the soil degradation type, extent, degree, impact on ecosystem services, direct and indirect causes of degradation, as well as all soil conservation practices, are determined.
4) Once collected, the data is entered in the on-line WOCAT-QM Mapping Database from which various maps can be generated.

Following the principles of all WOCAT questionnaires, the collected data are largely qualitative, based on expert opinion and consultation of land users. This allows a rapid and broad spatial assessment of soil degradation and conservation/SLM, including information on the causes and impacts of degradation and soil conservation on ecosystem services.

More details about the methodology used to produce these maps and their interpretation can be found here.

Land Use (click on maps to expand)

 Spain Canyoles land use typesS  Spain Canyoles trend in land use intensityS Spain Canyoles area trend land use systemS

 Soil Degradation

The degree of degradation reflects the intensity of the degradation process, whilst the rate of degradation indicates the trend of degradation over a recent period of time (approximately 10 years).

Spain Canyoles dominant types of soil degradationS Spain Canyoles degree of degradationS Spain Canyoles rate of degradationS

 Conservation measures

The "effectiveness" of conservation is defined in terms of how much it reduces the degree of degradation, or how well it is preventing degradation. The Effectiveness trend indicates whether over time a technology has increased in effectiveness.

Spain Canyoles dominant conservation measuresS Spain Canyoles effectiveness of conservation measuresS Spain Canyoles conservation effectiveness trendS

 RECARE data repository

Data collected from the case study area for the project are held in a repository on the European Soil Data Centre (ESDAC) website hosted by Joint Research Centre (JRC).  Below is a list of the data held.

  • General info
  • Precipitation
  • Temperature
  • Soil Parameters
  • Soil Erodibility
  • K-Stoniness
  • Organic carbon content
  • Rainfall Erosivity
  • PESERA
  • Topsoil Organic Carbon
  • Wind Erodible Fraction

To access the data click HERE (currently only accessbile with  EUECAS login details)

Effects of soil threat on soil functions 

Table below summarises the effects of abuse and misuse of agriculture soils leading to dramatic reduction of soil functions of the Cànyoles Case Study.

Functions of soilExplanationEffect
Biomass production Losses in the agriculture production due to the depletion of the organic matter, weakening of the soil structure and soil erosion. H
Environmental interactions Use of concrete walls, asphalt and concrete to protect the agriculture infrastructure, and they results in soil sealing H
Gene reservoir/ Biodiversity pool Local species are losing their habitat primarily due to the removal of the flood irrigation, the monoculture of citrus, olive and vineyards, and the urbanization of the land. H
Physical medium Urbanization of the land due to drip irrigation systems based on small houses to install all the equipment H
Source of raw materials There is a decrease of biomass as the herbicides reduce the weeds in the agriculture fields. H
Carbon pool Data on C stocks is little due to the fact that the soils are losing organic matter. H
Cultural heritage The traditional sustainable farming is being removed and new productivity and market oriented strategies are in place. H

Administrative and socio-economic setting

Rural migration took place in the western part of the Cànyoles River watershed (La Font de la Figuera) since the 1950’s. Meanwhile the municipalities in the Eastern part of the watershed increased the population as new industries were developed (textile, leather, paper, etc.). Then, the Cànyoles river watershed displayed the contrasted evolution of the population in Spain, which passed from a rural population to an urban population in two decades. The socioeconomic changes that took place during the last century (i.e. industrialization and industrial area expansion and the subsequent financial crisis in textiles, paper and leather) resulted in the construction and the subsequent abandonment of industrial developments on the best agriculture soils. This has led to a direct loss of resources and ultimately land degradation. The intensification of the agriculture in the drip-irrigation areas in the bottom of the Cànyoles basin has resulted in the abandonment of the traditional rain-fed land.

There is a growing concern due to the farmer’s loss of knowledge on traditional agriculture. The industrialization of agriculture is resulting in the lack of knowledge on the natural cycles, and the loss of the diversity in the plants and animals. Furthermore, there is lack of knowledge on the relevance between unsustainable agriculture management practices and water pollution, sediment transport and landscape changes. More importantly, there is little information on strategies against land degradation and little action towards the development of soil care strategies towards sustainable agriculture. This renders the Cànyoles river watershed less shelf-sufficient of agricultural products, although it is an agriculture region.

Within the scope of the RECARE Project, interviews with mayors of the municipalities and the main political leaders of the Cànyoles watershed reveal the key issues related to policy and governance in the area. We found that the professional policy makers take into account the low population political activity. Besides the high participation of citizens in exercising their right to vote every four years, their contribution to the daily policy development program is rare. Therefore, awareness of the citizens about their contribution to improve the land management is absent. Farmers also think that solutions towards a better care of soils should come from policy makers rather than farmers themselves, and that their main tasks are limited to food production.

fig78

Population of the Cànyoles River watershed (left) and GDP per capita trends for Spain and the Euro Area (right, Source: EUROSTAT)

Management options

Sustainable land management practices include the use of catch crops, mulches, and vegetation barriers (Giménez Morera et al., 2010).

Stakeholder involvement

Relevant end-users and local stakeholder groups include:

  • Farmers
  • Farmers union
  • Cooperatives
  • Companies
  • NGOs
  • Municipalities

The research project will be presented in each community in order to show the aims of the researchers and citizens will be encouraged to be involved in the development of new strategies and management approaches to help reduce land degradation.

This web page is authored by:

A. Cerdà and O. González-Pelayo from University of Valencia

With contributions from: Ioannis K. Tsanis and Ioannis N. Daliakopoulos (Deliverable 3.1) and Godert van Lynden, Zhanguo Bai, Thomas Caspari (Deliverable 3.2).

References

Bodí, Merche B. Isabel Muñoz-Santa, Carmen Armero, Stefan H. Doerr, Jorge Mataix-Solera, Artemi Cerdà. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. CATENA 108:14-25 dx.doi.org/10.1016/j.catena.2012.04.002.

Cerdà, A. 1996. Seasonal variability of infiltration rates under contrasting slope conditions in Southeast Spain. Geoderma, 69: 217-232.

Cerdà, A. & Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80.

Cerdà, A., Imeson, A.C., Poesen, J., 2007. Soil Water Erosion in Rural Areas. Catena special issue 71, 191- 252.

Cerdà, A., Flanagan, D.C., le Bissonnais, Y., & Boardman, J. 2009a. Soil Erosion and Agriculture. Soil and Tillage Research, 107-108. doi:10.1016/j.still.2009.10.006.

Cerdà, A., Giménez-Morera, A., & Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms, 34, 1822-1830. DOI: 10.1002/esp.1889.

Cerdà, A., Hooke, J. Romero-Diaz, A., Montanarella, L., & Lavee, H. 2010. Soil erosion on Mediterranean Type-Ecosystems Land Degradation and Development. Editors. DOI 10.1002/ldr.968. DOI: 10.1002/ldr.968.

García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research, doi:10.1016/j.still.2009.06.002

Giménez Morera, A., Ruiz Sinoga, J.D., Cerdà, A. 2010. The impact of cotton geotextiles on soil and water losses in Mediterranean rainfed agricultural land. Land Degradation and Development , 210- 217. DOI: 10.1002/ldr.971.

Haile, G. W., & Fetene, M. 2012. Assessment of soil erosion hazard in Kilie catchment, East Shoa, Ethiopia. Land Degradation & Development, 23: 293–306. DOI 10.1002/ldr.1082

Mandal, D., & Sharda, V. N. Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24: 430-437. 2013. DOI 10.1002/ldr.1139.

Lasanta, A & Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute release. Catena, 60, 80-101.

Prokop, P., & Poręba, G. J. 2012. Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation & Development, 23: 310- 321. DOI 10.1002/ldr.2147.

Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. 2013. DOI 10.1002/ldr.2246.

Case Study Experiment - Soil Sealing

Soil information based spatial planning for soil protection

The researchers in Poland tested the effects of implementing soil sealing maps in spatial planning for improved soil protection.  Working in two Polish cities, Wroclaw and Poznan the researchers produced a baseline 'no action' scenario; ex-post soil sealing maps to raise awareness; ex-ante sealing forecast to change spatial development plans; delineation of functional areas to be protected against sealing

Poznan

 poznan map  

results

Map of soil sealed area in Poznań - 2013  Progress in the soil sealing process in POZNAŃ 

For more information about this research please contact Grzegorz Siebielec This email address is being protected from spambots. You need JavaScript enabled to view it.

Geographical description

Both Wroclaw and Poznan developed on relatively good productive soils, including fluvisols and cambisols. In Wroclaw, agricultural lands still cover 43%, sealed surfaces 39%, forests 7%, water bodies 3.2% of the total area. Big rivers flow through both cities causing a flooding risk in some periods, especially in winter (e.g. extreme flood in 1997 caused vast devastation of Wroclaw). The case study will be supplemented by a desktop study of 2 other cities in Europe (Seville in Spain, The Hague in the Netherlands), using methodology developed in URBAN SMS.  In this study, the expansion of these cities will be determined using satellite images, and the impact of this expansion on soil and soil related functions and services will be evaluated using soil maps. The remote sensing data representing different time periods will be used for assessing urban sprawl trends and the produced land use change maps will be superimposed over maps describing soil quality. The remote data to be used are Landsat images for 1980 – 2013 period and for selected cities LiDAR information for more detailed studies of soil sealing and distribution of permeable layers as a result of policy instruments.
 
fig61
 
Case Study – Poznań
Poznan is one of the biggest cities in Poland. It is the administrative capital of the Wielkopolska region. The city area is 261.85 km2 but the total Case Study area covers nearly 2,158 km2 including rural areas . Population of the city is 551,000 with the density up to 2,100 people per km2. Mean elevation within the city boarders is 86.6 m and mean slope is 1.8%. Poznan is divided into two parts by the Warta River. The city is known for having the smallest unemployment rate in Poland; 4.2%. Mean annual precipitation is 516 mm, which is lower than the mean annual precipitation for whole Poland – 600 mm. The mean annual temperature 8.5oC is higher than average for Poland – 7.3oC. As a consequence, Wielkopolska faces droughts especially in the vegetation period. The Institute of Soil Science and Plant Cultivation in consultation with the Ministry of Agriculture and Rural Development coordinates the program “Agricultural drought monitoring system”. The main idea of this program is to give precise information about the drought threat to the government and farmers, based on combined input on soil moisture, temperature and precipitation.
 
Case Study – Wroclaw
Wroclaw is the capital of the Lower Silesia region, located in the south west of Poland. The population of the city is 633,000 with a density up to 2,160 people per km2. The main part of the city is located on the south west of the Odra River which divides the city into 12 small islands. Total city area is 293 km2, with mean elevation 141.4m and mean slope 1.7%. Wroclaw is the fourth most populated city in Poland. Actual administrative city borders are inefficient for evaluating urban sprawl impacts on suburban areas and their ecosystem services. Therefore, the Case Study covers also adjacent administrative units. Mean annual precipitation is 576 mm, with the highest values in June, July and August. High precipitation during the summer months creates a risk of flooding. Most severe flood took place in 1997, when approximately 45% of the city area was flooded. Mean annual temperature is 8.5oC. The lowest mean temperature is recorded for January (-0.4oC), the highest for July (18.8oC). As the area is located at the foot of the Sudety Mountains warmer air is being held up on the leeward side of the mountains.

Main soil threat

WroclawMapIncrease in built up area in Wroclaw since 1991 (red)Constant urban development creates pressure on soils within the administrative borders of both cities and suburban areas. Often, uncontrolled land take and sealing decrease the extent of high quality soils resource (e.g. productive soils with high clay and organic matter) that is able to provide numerous functions: crop and biomass production, water retention, contaminant filtration, and the provision of biodiversity. For example in Wroclaw, there is growing pressure on most valuable soils located in the southern part of the city. Preliminary data indicates that in the last 15 years, a large reduction of high quality soils has been observed. Since urban soils were recently (2009) excluded from legal protection (the act on agricultural and forest land protection) there is a risk that the continued trend of quality soil being lost to urbanization could continue into the future. There is limited information on trends in sealing of soil resources (what soils are being sealed) and the impact of existing regulations and development strategies. Limited awareness, lack of soil protection rules and competing land use interests of different stakeholder groups are constraints to the sustainable management of soil resources.

Drivers and pressures

Main drivers of soil sealing include the need for new housing, industry, business locations and transport infrastructure, mainly in response to a growing population and a demand for better quality of life and living standards (Ceccarelli et al., 2014).
 
fig65
 

Status of soil threat

According to the EEA soil sealing map - below, 2.3% of the European Union’s territory was already sealed in 2006 and 4.4% of the territory was subject to artificial surface formation (Prokop et al., 2011). In the European Union, artificial surfaces are on average sealed by 51%, but this fraction varies strongly among Member States, depending on dominant settlement structures and the intensity of the interpretation of artificial surfaces (Prokop et al., 2011). According to the CORINE land cover spatial database, artificial areas covered 4.1%, 4.3% and 4.4% of the EU territory in 1990, 2000 and 2006, respectively. This corresponds to an 8.8% increase of artificial surface in the EU between 1990 and 2006. In the same period, population increased by only 5%. In 2006, each EU citizen allocated 389 m2 of artificial surfaces, which is 3.8% or 15 m2 more compared to 1990 (Prokop et al., 2011).
 
fig66
 
In Poznań, as a consequence of urban sprawl, intensive soil sealing takes place even outside the administrative boundaries of the city. In the whole area, 53.3% are arable lands, located mostly on loams, silts or sandy clays soils (below - left). Wielkopolska province has the highest farm productivity per ha in Poland, focused mainly on animal farming for meat production. Only 3.7% of land use is covered by pastures. Forests are covering mostly sandy and loamy sandy soils in the north east and the south west of the area. Based on EEA data, soil sealing is identified on 16% of the city area (below, right).
 
fig67
Dominant top soil texture and soil sealing % (left) and dominant land use types (right) in Poznań
 
In Wroclaw, the urbanization pressure is especially intensive in the southern part of the city and suburbs, where most productive soils are located. Dominant top soil textures (88.6% of the total Case Study area) are loams, silts or sandy clays (below, left). 60.5% of the area is used as arable land and only 4.6% as pastures. Large size farms are focused mainly on cereal production. Forests constitute 13.8% of the area mostly near by the Odra River and its tributaries. Approximately 16% of the whole area is currently sealed (below, right).
 
 
fig68
Dominant top soil texture and soil sealing % (left) and dominant land use types (right) in Wroclaw

WOCAT Maps 

Maps on the current state of land use, soil degradation and soil conservation in the case study area have been produced using the WOCAT (World Overview of Conservation Approaches and Technologies) methodology

The steps of this process are as follows:

1) The area to be mapped is divided into distinctive land use systems (LUS).
2) The team gathers the necessary data on soil degradation and conservation for each LUS using a standardised questionnaire, in close consultation with local land users, and supported where possible by remote sensing or field data.
3) For each LUS, the soil degradation type, extent, degree, impact on ecosystem services, direct and indirect causes of degradation, as well as all soil conservation practices, are determined.
4) Once collected, the data is entered in the on-line WOCAT-QM Mapping Database from which various maps can be generated.

Following the principles of all WOCAT questionnaires, the collected data are largely qualitative, based on expert opinion and consultation of land users. This allows a rapid and broad spatial assessment of soil degradation and conservation/SLM, including information on the causes and impacts of degradation and soil conservation on ecosystem services.

More details about the methodology used to produce these maps and their interpretation can be found here.

Wroclaw
 
Land Use (click on maps to expand)
 
 Poland Wroclaw land use typesS  Poland Wroclaw area trend land use systemS  Poland Wroclaw trend in land use intensityS
 
Soil Degradation 
The degree of degradation reflects the intensity of the degradation process, whilst the rate of degradation indicates the trend of degradation over a recent period of time (approximately 10 years).
 
Poland Wroclaw dominant types of soil degradationS Poland Wroclaw degree of degradationS Poland Wroclaw rate of degradationS


Conservation Measures 

The "effectiveness" of conservation is defined in terms of how much it reduces the degree of degradation, or how well it is preventing degradation.  The Effectiveness trend indicates whether over time a technology has increased in effectiveness.

Poland Wroclaw dominant conservation measuresS Polans Wroclaw effectiveness of conservation measuresS Poland Wroclaw conservation effectiveness trendS

Poznan 

 Land Use 
 
Poland Poznan land use typesS Poland Poznan area trend of land use systemS Poland Poznan trend in land use intensityS
 
Degradation 
The degree of degradation reflects the intensity of the degradation process, whilst the rate of degradation indicates the trend of degradation over a recent period of time (approximately 10 years).
Poland Poznan dominant types of soil degradationS Poland Poznan degree of degradationS Poland Poznan rate degradationS
 
Conservation Measures 
The "effectiveness" of conservation is defined in terms of how much it reduces the degree of degradation, or how well it is preventing degradation.  The Effectiveness trend indicates whether over time a technology has increased in effectiveness.
Poland Poznan dominant conservation measuresS Poland Poznan effectiveness of conservation measuresS Poland Poznan conservation effectiveness trendS

 RECARE data repository

Data collected from the case study area for the project are held in a repository on the European Soil Data Centre (ESDAC) website hosted by Joint Research Centre (JRC).  Below is a list of the data held.

  • General info
  • Precipitation
  • Temperature
  • Soil Parameters
  • Soil Erodibility
  • K-Stoniness
  • Organic carbon content
  • Rainfall Erosivity
  • PESERA
  • Topsoil Organic Carbon
  • Wind Erodible Fraction

To access the data click HERE (currently only accessbile with  EUECAS login details)

Effect of soil threat on soil function

The stakeholder inclusive analysis in cities of Central Europe revealed that in general two economic soil functions “Housing and workplace provision” and “Transport infrastructure” were set as most important by the stakeholders (Siebielec et al, 2011). These circumstances make soil protection activities even more important because of economy related pressure on soils. On the other hand all environmental soil functions were classified as important to protect in all cities since the stakeholders recognize the existing negative trends in soil management (below). The participatory impact assessment performed for various soil protection scenarios revealed that the baseline (no change in regulations) scenario would be favorable to economic functions “Housing and workplace provision” and “Transport infrastructure” whereas all environmental functions were deemed as threatened (Siebielec et al., 2011) (below).
 
fig69
Left: ranking of soil function importance in cities of Central Europe based on stakeholder opinions;
Right: range and mean impact of baseline scenario on soil/land functions (across 6 cities of Central Europe).
 

Administrative and socio-economic setting

The major drivers of soil management under urbanization pressures are soil protection regulations and spatial planning approaches. Soil protection regulations against conversion of agricultural lands into urban purposes are created by the Ministry of Agriculture and Rural Development. In Poland, the major national regulation related to soil and agricultural protection is the law on agricultural and forest land protection (Ustawa z dnia 3 lutego 1995 r. o ochronie gruntów rolnych i leśnych). Protection against conversion of agricultural soils into non-agricultural purposes is represented in this act by the following instrument: “Transformation of agricultural land of high quality (classes I-III) into other uses requires decision of Ministry of Agriculture and Rural Development if the area of interest exceeds 0.5 hectare. Conversion of organic soils (peat soils) into non-agricultural use requires administrative approval (of lower level) regardless class of soil (these are mainly permanent grasslands)” The same legal act specifies the fees for exclusion of land from agricultural production, which are dependent on soil quality: the higher quality the higher fee is collected. The collected fees are directed to budgets of regional governments (voivodeships) and shall be spent e.g. for soil remediation and reclamation, soil protection against erosion, protection of small retention, sometimes subsidies to soil liming. However, since 2008 the fees for land use change within administrative borders have been abolished, creating a significant pressure on agricultural lands around and within cities.

Management settings

Soil sealing management usually relies on the effective enforcement of soil protection regulations and spatial planning approaches. Various EU funded research projects have dealt with soil sealing mapping and management options. For example, within the URBAN SMS project, an ex-post analysis of land use change was performed, responding to different soil protection regulations in several Central Europe cities. Seven cities served as test areas for the analysis: Milan, Bratislava, Prague, Wroclaw, Stuttgart, Vienna and Salzburg. The analysis involved development of land use change maps based on consistent satellite image data, analysis of land use change trends within a 15-year period (1991/92-2006/07) and subsequent assessment of soils lost during urban development (Siebielec et al., 2010). The analysis revealed that the most valuable soils were efficiently protected in Bratislava. It was assumed that this is, at least partly the result of the regulations present in Slovakia. The soils classified in our assessment as high quality are covered by a fee payment system (1-4 classes from a total of 9). In Stuttgart and Milan the sealing of high quality soils was rather proportional to their share in the total soil pool. The assessments performed for Wroclaw, Prague, Vienna and Salzburg revealed trends of conversion of the most valuable soils into urban uses (Siebielec et al., 2010).

Huber and Kurzweil (2012) summarized spatial planning approaches in cities of Central Europe. In Germany (Baden-Württemberg), Austria (Vienna, Salzburg), Italy (Piemonte, Lombardia) and the Czech Republic (City of Prague), basically a three-tiered system is in place. This implies that obligatory urban planning instruments and procedures exist on federal state level (corresponding with region level in Italy), regional level (corresponding with province level in Italy and NUTS 3 level in the Czech Republic), and local (municipality/city) level. It is worth noting that there are larger similarities between Austria and Germany than towards Italy or the Czech Republic, whose planning systems are characterized by some particularities. Slovenia (City of Celje), the Slovak Republic (Bratislava) and Poland (Pulawy) currently have a basically two-tiered system, with obligatory planning instruments in Slovenia being in force on the national and the municipality level only, but not on the regional level, whereas the Slovak Republic and Poland have binding instruments on the regional and municipality level (and, in addition, a non-binding spatial development concept on national level).

Stakeholder involvement

Relevant end-users and local stakeholder groups include:

  • Local administration (e.g. environmental departments)
  • Ministry of Environment and Ministry of Agriculture and Rural Development (policy makers)
  • Spatial planners
  • Developers

Preliminary analysis revealed that the steering of some new constructions to areas with lower quality soils is practicable. Awareness raising and information produced within the project will be provided to stakeholders.

Analysis of soil sealing trends through the classification of satellite images representing different periods of development of the cities: 1990's to 2009 and 2009-2013 (after exclusion of urban areas from agricultural land protection regulation)
will be performed for all four cities.

Stakeholders will contribute to the assessment of best management practice examples (planning tools, tax instruments, compensation mechanisms, fee payment, etc.) in terms of feasibility for local situation and for Poland. The discussion will be initiated on the shape of future soil protection laws in Poland.  Stakeholders will help to assess spatial planning scenarios (e.g. protection and no protection of high-quality soils) and define reliable soil protection goals.


This web page is authored by:

G. Siebielec and T. Miturski from Instytut Uprawy Nawozenia I Gleboznawstwa, Panstowowy Instytut Badawczy, Poland

With contributions from: Ioannis K. Tsanis and Ioannis N. Daliakopoulos (Deliverable 3.1) and Godert van Lynden, Zhanguo Bai, Thomas Caspari (Deliverable 3.2).

References

European Commission (2012): Guidelines on best practice to limit, mitigate or compensate soil sealing, SWD(2012) 101 final

Huber S. and A. Kurzweil (Eds.) (2012) Guide Municipal Soil Management. Urban SMS project: Deliverable number: 3.4.2, pp.57

Prokop G, Jobstmann H., A. Schonbauer (2011): Report on best practices for limiting soil sealing and mitigating its effects. Publisher: European Commission, Brussels, Technical Report - 2011 – 050, ISBN : 978-92-79-20669-6


Siebielec G., A. Lopatka, T. Stuczyński, M. Kozak, M. Gluszynska, J. Koza, A. Zurek, R. Korzeniowska-Puculek (2010): Assessment of soil protection efficiency and land use change. Urban SMS project: Deliverable number: 6.1.2, pp.42


Siebielec G., T. Stuczyński, A. Lopatka, P. Czaban (2011) Stakeholder network for impact assessment of soil protection scenarios. Urban SMS project: Deliverable number: 6.3.1, pp.24

 

Case Study Experiment - Soil Compaction

Case Study - mitigating subsoil compaction by modest wheel loads and inflation pressures

The Danish experiment involved identifying thresholds in wheel load and inflation pressure to prevent subsoil compaction and to secure soil ecosystem services. The aims of the to study were to: (i) test experimentally the use of tracks instead of tires as a technical solution to increase contact area and reduce the magnitude of contact stresses, (ii) compare effects of traffic on soil physical properties using tires or tracks, and (iii) evaluate a state-of-the-art method for risk assessment of soil compaction beneath tracks or tires at the European level.

Slurry application trailer with wheel load ~6 Mg
tyre inflation pressure: 1 bar                      vs.                  3 bar
approx. tyre-soil contact area: 0.67 m2       vs.                 0.47 m2
Tyres
Photos: Samson A/S
Compacted soil
Compaction effects on subsoil (~49-72 cm) for a loamy soil trafficked with machinery for slurry application (compacted soil to the right)

Final results

  • We compared different traffic systems for slurry application at three locations

  • Standard practice implies 6 Mg wheel load (REF). Mitigation treatment was 3 Mg wheel load (MIT)

  • Key results for ~25-30 cm depth, average across three locations:

    • MIT had ~39% higher volume soil pores >30 μm than REF

    • MIT had ~15% lower penetration resistance than REF

    • MIT had >1200% higher hydraulic conductivity than REF

    • After-treatment effect of REF compared to MIT was 5.7% yield decrease

 Comparing the use of machinery wheels or trackes to reduce contact stresses in the soil the following results were obtained:

  • Maximum vertical stress was smaller beneath the rubber track than beneath the tire
  • Stress distribution was highly uneven beneath the rubber track
  • Low air permeability beneath the rubber track indicates high shear forces
  • The results call for quantification of shear stresses under tires and tracks

Scientific Articles

Schjønning, P., van den Akker, J.J.H., Keller, T., Greve, M.H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., Breuning-Madsen, H. 2015. Driver-Pressure-State-Impact-Response (DPSIR) Analysis and Risk Assessment for Soil Compaction—A European Perspective. In: Donald L. Sparks, Editor(s), Advances in Agronomy, Academic Press, 2015, Volume 133, Pages 183-237, ISSN 0065-2113, ISBN 9780128030523, http://dx.doi.org/10.1016/bs.agron.2015.06.001.

Schjønning, P., Lamandé, M., Munkholm, L.J., Lyngvig, H.S., Nielsen, J.A. 2016. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils. Soil and Tillage Research 163, 298308. http://dx.doi.org/10.1016/j.still.2016.07.003

Schjønning, P., Lamandé, M., Crétin, V., Nielsen, J.A. 2017. Upper subsoil pore characteristics and functions as influenced by field traffic and freeze-thaw and dry-wet treatments. Soil Research 55, 234-244. http://dx.doi.org/10.1071/SR16149

Obour, P.B., Schjønning, P., Peng, Y., Munkholm, L.J. 2016. Subsoil compaction assessed by visual evaluation and laboratory methods. Soil and Tillage Research (in press). http://dx.doi.org/10.1016/j.still.2016.08.015

 Schjønning, P., Koppelgaard, M. 2017. The Forchheimer approach for soil air permeability measurements. Soil Science Society of America Journal  doi:10.2136/sssaj2017.02.0056,

(In cooperation with Padova University, Case Study on organic matter:

Piccoli, I., Schjønning, P., Lamandé, M., Furlan, L., Morari, F. 2017. Challenges of conservation agriculture practices on silty soils. Effects on soil pore and gas transport characteristics in North-eastern Italy. Soil & Tillage Research 172, 12-21.)

Schjønning, P., van den Akker, J.J., Keller, T., Greve, M.H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J. and Breuning-Madsen, H., 2015. Chapter Five-Driver-Pressure-State-Impact-Response (DPSIR) Analysis and Risk Assessment for Soil Compaction—A European Perspective. Advances in Agronomy, 133, pp.183-237.  http://www.sciencedirect.com/science/article/pii/S0065211315001108

Lamandé, Mathieu, Per Schjønning, and Rodrigo Labouriau. "A Novel Method for Estimating Soil Precompression Stress from Uniaxial Confined Compression Tests." Soil Science Society of America Journal (2017). doi:10.2136/sssaj2016.09.0274

CONFERENCE PROCEEDINGS

Lamandé, M., Munkholm, L.J., Nielsen, J.Å., Schjønning, P. 2015. Horizontal stresses below two agricultural vehicles. Proceedings, 20th International Conference of the International Soil Tillage Research Organization (ISTRO), September 2015, Nanjing, China.

Lamandé, M., Schjønning, P. 2015. Rubber tracks are still not good enough. Proceedings, 20th International Conference of the International Soil Tillage Research Organization (ISTRO), September 2015, Nanjing, China.

 Nielsen, J.Å., Munkholm, L.J., Schjønning, P., Petersen, C. 2015. Does heavy traffic have long term implications for crop yields. Proceedings, 20th International Conference of the International Soil Tillage Research Organization (ISTRO), September 2015, Nanjing, China.

Other scientific publications & reports

In English

Schjønning, P., Greve, M.H., Noe, E. 2015. Case study soil compaction (Aarslev). In: Tsanis, I.K. & Daliakopoulos, N. (Eds) RECARE Case Study Descriptions, RECARE Project Report No. 04 (Deliverable D3.1), pp. 43-50.

Schjønning, P., Lamandé, M., Lassen, P. 2016. An introduction to Terranimo. Unpublished note at www.terranimo.dk

Schjønning, P., van den Akker, J.J.H., Keller, T., Greve, M.H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., Breuning-Madsen, H., Noe, E., Mills, J. 2016. Fact sheet – Soil Compaction. Deliverable from project RECARE, May 2016.

Schjønning, P., van den Akker, J.J.H., Keller, T., Greve,M.H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., Breuning-Madsen, H., 2015. Soil compaction. In: Chapter 6 of Stolte, et al. (Eds.), Report on Soil Threats to Soil Quality. EU-project RECARE.

Further information about the case study activities in Danish can be found here

For more information about this RECARE experiment, please contact Per Schjønning Per.Schjonning@agro.au.dk

Geographical description

Aarslev

The Case Study for soil compaction will not be restricted to one specific geographical site. Rather, the idea is to enable evaluation of the soil compaction threat for all soils across Europe, using the Aarslev site as a test-case. An existing decision support tool under development (Terranimo®; www.soilcompaction.eu) will be refined and used for predicting compaction for specific combinations of soil texture, soil water regime and machinery. European-wide maps of the Wheel Load Carrying Capacity (WLCC) will be produced based on the same mechanistic models that are implemented in the decision support tool.

Main soil threat

Compaction2

Soil compaction has significant impacts on vital soil functions, including crop production. Compaction creates reduced pore volume and increased mechanical strength, reduced hydraulic conductivity, facilitates preferential flow in macropores, decreases soil aeration, and reduces rooting in the soil profile. This, in turn, may cause poor nutrient use efficiency, surface run-off and water erosion, increased emission of greenhouse gases, and reduced crop yields. Compaction is a growing problem because of the continued increase in weight of agricultural machinery. This development relatesto the challenge for modern agriculture to retain economic viability. Recent research has provided experimental evidence that tyre pressure is the main driver for compaction in topsoil layers, while the wheel load determines the stresses reaching deep soil layers. Soil resilience to compaction damage, i.e. the ability of soil structure to recover from compaction, has proven very poor for subsoil layers. Hence, subsoil compaction is a stealthy evil that is often not recognized by farmers. The knowledge of the main mechanisms of the compaction process is available but needs to be incorporated in decision support tools, enabling the farmer to evaluate the sustainability of any planned traffic in the field.

 Other soil threats

Soil erosion by wind used to be a severe problem for the sandy soils, especially in the western part of the country but has now reduced significantly due to the use of winter crops in combination with effective hedges between fields. Soil erosion by water has received attention due to the resulting eutrophication of the aquatic environment, thus farmers have been obliged to implement permanently cropped strips of river- and lake-side agricultural fields in order to reduce it. However, the quality of the soil per se is also under threat through the action of water erosion and soil movement imposed by tillage on sloping land (e.g. Chirinda et al., 2014). Recently, in some regions of Denmark, the topsoil content of organic matter has reduced to critical levels (e.g. Schjønning et al., 2009) due to overexploitation with annual crops, especially cereals. This relates to a change in the structure of Danish agriculture, as increasing specialization has led to arable cash cropping with no application of animal manure, especially for the eastern part of the country.

Natural environment

Geology and soils
The central and eastern part of the country consists of a last glacial (Weichselian) morainic landscape with mainly loamy calcareous tills - see below. The western part of the country, which was not covered by ice during the last glacial, consists of low-relief glaciofluvial sandy sediments, emanating from melting last glacial glaciers, surrounding slightly protruding ‘islands’ of the older and strongly eroded landscapes of earlier (Saalian) glacial eras. The northern part of the country consists of a Weichselian glacial core bordered by uplifted marine sediments from early and mid-Holocene. Sand dunes are found in the coastal areas, particularly on the west coast, and as patchy inland deposits. The southwestern coastal region is a salt marsh, dominated by recent fine-textured tidal sediments. The bedrock reaches the surface of the land only at the island of Bornholm. Throughout the country, poorly drained basins have been filled with fine inorganic sediments (gyttja) and peat during the Holocene (Madsen et al., 1992). The soil at the Case Study field of the Aarslev Research Centre is glacial till from the Weichselian glacial era - see below. In the USDA soil classification system, the soil is a Typic Agrudalf, which in the FAO system is an Orthic Luvisol (Nielsen and Møberg, 1984). The soil is a loamy sand type with about 10-14% clay in the topsoil.

fig52

Left: The landscape of Denmark, legends showing the geologic origin of soils (Adhikari et al., 2013).
Right: Weight of fully loaded Danish-produced Dronningborg combine harvesters used in Danish agriculture from the late 1950’s to about 2010 (data kindly provided by Steen Trampedach).

 

Land Use
The main part of the Danish land (62%) is used for agricultural production (EEA, 2015; NN, 2013). However, since the early 1950s the arable area has been decreasing, and between 1980 and 2008 the area decreased by 3%. The rest of the area includes forests (13%), urban fabric (10%), nature areas in the open land, for example heathland and meadows, (9%) and lakes and watercourses (2%)(European Environment Agency, 2015). During the last decades, nature areas in the open land have decreased, whereas forests and built-up-areas have increased. Since the end of the 19th century, forest areas have more than doubled (European Environment Agency, 2015). Cultivated areas are fertilized and limed, and ~50% of the soils – especially clay-holding soils – have been drained artificially (NN, 2013).

Climate

Denmark has a temperate climate with a winter mean temperature of 0 °C and a summer mean of 16 °C (Danmarks Meteorologiske Institut, 1998)(Figure 5.5). The average annual precipitation varies from 500 mm in the Great Belt region (east) to 800 mm in central Jutland (west). In late autumn, winter and early spring, precipitation exceeds evapotranspiration. Between 150 mm of water (in the Great Belt region) to more than 400 mm (in mid and western Jutland) are leached through the soils annually (Jensen and Jensen, 1999). The humid climate implies that the soils of Denmark are at field capacity or wetter typically from about September to mid-April. In wet summers, the same applies to parts of the summer.

 fig55

Average annual and (b) mean monthly precipitation and temperature in Aarslev

Drivers and pressures

In Denmark, the trend of increasing mechanization and machinery weight is more pronounced than in other European countries (Perrot and Chatellier, 2009). Larger and more efficient machinery have been introduced in order to compensate for reduced manpower. As an example, while early combine harvesters designed, produced and used in Denmark around 1960, processed about 4 Mg small grain cereals per hour, modern combines can process 10 times more (Schjønning et al., 2015). Figure 5.4 shows the loaded weight of the combine harvesters produced by the Dronningborg factory from the late 1950’s to around 2010. Schjønning et al. (2015) showed that the increase in weight – despite a concurrent increase in the size of tyres – imposes increased mechanical stresses imposed to all parts of the soil profile.

The increase of agricultural machinery tyre dimensions allows traffic at mechanically weaker soils, unlike the narrower tyres that prevented loading with high weights on wet soil. Therefore, farmers running very large units are tempted to start field operations (e.g. tillage and fertilizer application) in the spring as soon as it is physically possible to drive on the fields. However, at wet conditions the vertical stresses are transmitted to deeper layers and the soil is mechanically weaker than at drier conditions (e.g., Lamandé and Schjønning, 2011). The same issue is relevant for harvest situations. In the Southeastern part of Denmark, large areas are grown with sugar beet for sugar production. Time of delivery of the beets to the factories producing the sugar is decided by the factories and not the farmer. Most farmers avoid temporary storage of beets in clamps, meaning that most often they are harvested at very wet conditions in the late autumn and early winter. Although this condition has not changed for decades, the increase in size of tyres and the use of tracks has enabled much heavier machinery. For comparable soils and climatic conditions in southern Sweden, Arvidsson et al. (2000) showed that the risk/probability of subsoil compaction with commonly used year-2000 size machinery was 100% for spring slurry application and more than 60% after the 1st of October in sugar beet harvesting. Also combine traffic in the harvest of cereal crops may take place at very wet conditions. Again, the larger tyres – with very large loads – enable traffic at conditions where previously the harvest operation was postponed or even given up. Finally, silage maize was previously a seldom crop in Denmark but is now grown extensively for forage for dairy cows. This has increased the acreage that is trafficked with heavy machinery at very wet conditions late in the autumn.

The application of fertilizers and animal manure is strongly regulated in Danish agriculture. Even prior to EU regulation through the Water Framework Directive, a range of rules were imposed in order to minimize the leaching of nutrients to the aquatic environment. One restriction is the time of application of animal slurry. It has been banned to bring out slurry from the 1st of October to the 1st of February. Farms producing large quantities of slurry from pigs and cows were therefore forced to build expensive slurry tanks. Following negotiations with the authorities, the time for first application in the spring has been set as early as the 1st of February. This date was settled only based on the risk of leaching of nutrients. However, at that time of the year, Danish soils are extremely wet and vulnerable to compaction. Thus, the focus on protection of the aquatic environment has given rise to a situation, where >50 Mg machinery (wheel loads 6-12 Mg) starts traffic on near-saturated fields in mid to late winter.

As the effects of this type of compaction are not directly visible, many farmers have only a faint idea of the damage that modern machinery may exert to the subsoil. The moderate wheel ruts generated by wider tyres at wet conditions may incorrectly be perceived as an indication of insignificant effects at deeper layers. Further, the high focus on the economics in agricultural production tends to outmatch the inherited care farmers would normally allocate to the protection of their soils (Mills et al., 2013). One example is the slurry application, where a postponement of the traffic to reasonable soil water conditions later in the spring might demand investments in costly additional slurry storage capacity.

Status of soil threat

Essentially all arable soils of Denmark are affected by soil compaction. High densities and penetration resistance of subsoil layers have been documented in a range of experimental and non-experimental studies (e.g. Schjønning et al., 2009). Data from the Danish Soil Database (Breuning-Madsen and Jensen, 1985) indicate that critically high densities of subsoil 0.25-0.7 m layers are found for approximately 39% of the agricultural land (Schjønning et al., 2014). Importantly, most of the data in this database relates to soil sampled in the 1980’s. Given the abovementioned development in the size and weight of machinery (Figure 5.4), this estimate is probably considerably higher today (2015). Machine-induced compaction of subsoil layers across Europe is yet to be assessed.

RECARE data repository

Data collected from the case study area for the project are held in a repository on the European Soil Data Centre (ESDAC) website hosted by Joint Research Centre (JRC).  Below is a list of the data held.

  • General info
  • Precipitation
  • Temperature
  • Soil Parameters
  • Soil Erodibility
  • K-Stoniness
  • Organic carbon content
  • Rainfall Erosivity
  • PESERA
  • Topsoil Organic Carbon
  • Wind Erodible Fraction

To access the data click HERE (currently only accessbile with  EUECAS login details)

Effects of soil threat on soil functions

Compaction of the topsoil has a tremendous effect on the crop yield (e.g. Håkansson, 2005). The pore system of subsoil layers is affected in a way that restricts root growth and hence crop yields. The yield penalty will typically be less than experienced for topsoil compaction. However, extreme weather conditions (drought or very wet conditions) may dramatically increase the effects on crop performance. Compaction-induced modifications in the subsoil pore system may also increase the risk of preferential flow in macro-pores and hence the potential leaching of contaminants to drains and the groundwater. Higher frequencies of anoxic conditions in the soil matrix in between macro-pores may also influence the soil emission of greenhouse gases (Schjønning et al., 2015).

Functions of soilExplanationEffect
Biomass production Mean and variation R
Environmental interactions Loss to the environment I
Gene reservoir/ Biodiversity pool Biodiversity R
Physical medium/ Source of raw materials - D
Carbon pool - N
Cultural heritage Archaeological objects N

Effects of soil compaction on soil functions (Schjønning et al., 2015).
(R: Reduction; I: Increase; D: Damage)

Administrative and socio-economic setting

Similar to many European countries, agriculture in Denmark has changed dramatically in recent decades, accelerated especially after the end of World War II. Prior to that, a large part of the population worked in agriculture. As late as in 1970, a total of 230,000 citizens worked in primary production, a figure that by 2012 reduced to 66,000 (NN, 2013).

Around 1970, more than 100,000 individual farms shared the agricultural area, while in 2012 this had reduced to around 32,000. Importantly, only about 11,000 of these farms are run as professional units, providing a full income to the owner (NN, 2013). The rest are managed by individuals and families having part of their income from other sources. The development described above implies a great change in the size of farming units. The acreage belonging to farms with <50 ha has decreased dramatically (see below) for the last three decades, while there is a significant increase in units managing more than 300 ha. In 2012, about 43% of the agricultural area belonged to farms >200 ha (NN, 2013).

fig56

Management options

A range of options exists to minimize compaction damage, and it is the task of agronomists supervising farmers to facilitate implementation. Generally, avoidance of soil compaction demands a quantitative comparison of the forces acting on the soil surface and the mechanical strength of the soil at any depth of the soil profile. The methods to achieve this are unique for each region, cropping system, soil type, soil water content, and specific management procedure (e.g. sowing, tillage, harvesting). Even in a small country like Denmark, the combinations of the specific technical measures for all potential operations to be performed in the field would be endless. This calls for flexible tools that can support decision making regarding the issue of sustainability of any intended traffic. The Terranimo® tool (www.terranimo.dk) has been promoted for use in that context in several countries. The experiences gained will be included in the Case Study identification of potential policy measures to reach SLM.

Stakeholder involvement

Relevant end-users and local stakeholder groups include;

  • Kongskilde Industries (RECARE partner 27; manufacturer of agricultural machinery)
  • The Danish Knowledge Centre for Agriculture (Danish farmer advisory system)
  • Research Centre Aarslev, Kirstinebjergvej 10, Aarslev, Funen, Denmark (geographical site for soil compaction experiment used as a soil compaction test case)
  • Nordic Beet Research (R&D enterprise with a close contact to sugar beet growers)
  • Swedish Rural Economy and Agricultural Societies (farmer advisory system)
  • LTO Nederland (Dutch Federation of Agriculture and Horticulture)
  • IP-Suisse (federation of Swiss farmers focusing sustainable production methods)

The stakeholders will be involved in evaluating and refining the user-friendly and practical relevance of the Terranimo® decision support tool. Demonstration activities will be organized in cooperation with stakeholders.

Gender and stakeholder workshops

In the first workshop, of the 35 participants, 7 were women. Their roles as stakeholders in the workshop were as a farmer consultant (3), as regulation and community authorities (2), and as scientists (2). The men belonged either to these three stakeholder groups or to groups of landowners, political interest organizations, NGOs, and private companies. 

This web page is authored by:

L. Bernet, K. Herweg and V. Prasuhn from Aarhus University, Denmark

With contributions from: Ioannis K. Tsanis and Ioannis N. Daliakopoulos (Deliverable 3.1) and Godert van Lynden, Zhanguo Bai, Thomas Caspari (Deliverable 3.2).

References

Adhikari, K., Bou Kheir, R., Greve, M.B., Bøcher, P.K., Malone, B.P., Minasny, B., McBratney, A.B., Greve, M.H. 2013. High-Resolution 3-D Mapping of Soil Texture in Denmark. Soil Science Society of America Journal 77, 860-876.

Arvidsson, J., Trautner, A., van den Akker, J.J.H. 2000. Subsoil compaction – Risk assessment, and economic consequences. Advances in GeoEcology 32, 3-12.

Berisso, F.E., Schjønning, P., Keller, T., Lamandé, M., Etana, A., de Jonge, L.W., Iversen, B.V., Arvidsson, J., Forkman, J. 2012. Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil & Tillage Research 122, 42-51.

Berisso, F.E., Schjønning, P., Keller, T., Lamandé, M., Simojoki, A., Iversen, B.V., Alakukku, L., Forkman, J. 2013a. Gas transport and subsoil pore characteristics: Anisotropy and long-term effects of compaction. Geoderma 195-196, 184-191.

Breuning-Madsen, H., Jensen, N.H. 1985. The Establishment of Pedological Soil Data Bases in Denmark. Geografisk Tidsskrift 85, 1 8.

Chirinda, N., Elsgaard, L., Thomsen, I.K., Heckrath, G., Olesen, J.E. Carbon dynamics in topsoil and subsoil along a cultivated toposequence. Catena 120, 20-28.

Danmarks Meteorologiske Institut 1998. Danmarks Klima 1997. Danmarks Meteorologiske Institut, Copenhagen.

European Environment Agency 2015. Land use – state and impacts (Denmark). http://www.eea.europa.eu/soer/countries/dk/land-use-state-and-impacts-denmark.

Håkansson, I., 2005. Machinery-induced compaction of arable soils. Incidence – consequences – counter-measures. Report No. 109 from the Division of Soil Management, Department of Soil Sciences, Swedish University of Agricultural Sciences, 153pp.

Håkansson, I., Reeder, R.C. 1994. Subsoil compaction by vehicles with high axle load - extent, persistence and crop response. Soil and Tillage Research 29, 277-304.

Lamandé, M., Schjønning, P. 2011. Transmission of vertical stress in a real soil profile. Part III: Effect of soil water content. Soil & Tillage Research 114, 78–85.

Madsen, H.B., Nørr, A.B., Holst, K.A. 1992. The Danish soil classification: Atlas over Denmark. Royal Danish Geographical Society, Copenhagen, Denmark.

Mills, J., Gaskell, P., Reed, M., Short, C., Ingram, J., Boatman, N., Jones, N., Conyers, S., Carey, P., Winter, M., Lobley, M. 2013. Farmer attitudes and evaluation of outcomes to on-farm environmental management. Report to Department for Environment, Food and Rural Affairs (Defra). CCRI: Gloucester.

Nielsen, J.D. & Møberg, J.P. 1984. Klassificering af 5 jordprofiler fra forsøgsstationer i Danmark. Tidsskrift for Planteavl 88, Beretning nr. 1706, 155-167.

NN 2013. Fakta om erhvervet 2013 (in Danish). Publication from Landbrug & Fødevarer, Axelborg, Axeltorv 3, 1609 København V. ISBN-nr. 978-87-87323-17-8.

Noe, E., Alroe, H.F. 2014. Sustainable agriculture issues explained by differentiation and structural coupling using social systems analysis. Agronomy for Sustainable Development (in press) doi:10.1007/s13593-014-0243-4.

Jensen, H.E., Jensen, S.E. 1999. Jordfysik og jordbrugsmeteorologi. Det fysiske miljø for plantevækst. DSR Forlag, Copenhagen.

Perrot, C., Chatellier, V. 2009. Structural and economic changes in the dairy farms of north-western Europe from 1990 to 2005: contrasted paths. Fourrages 197, 25-46.

Schjønning, P., Heckrath, G., Christensen, B.T. 2009. Threats to soil quality in Denmark. A review of existing knowledge in the context of the EU Soil Thematic Strategy. DJF-Report Plant Science 143, Aarhus University, ISBN 87-91949-45-9, 121 pp.

Schjønning, P., Lamandé, M., Berisso, F.E., Simojoki, A., Alakukku, L., Andreasen, R.R. 2013. Gas diffusion, non-Darcy air permeability, and computed tomography images of a clay subsoil affected by compaction. Soil Science Society of America Journal 77, 1977-1990.

Schjønning, P., Rasmussen, S.T., Lamandé, M., Nielsen, J.M., Christensen, B.B., Nørgaard, H., Bak, H., Nielsen, J.Aa. 2011. Soil characterization of experimental fields prior to soil compaction experiments (in Danish). Institutional Report, Institute of Agroecology, Aarhus Universitet, ISBN 978-87-91949-83-8, 39pp.

Schjønning, P., van den Akker, J.J.H., Keller, T., Greve, M.H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., Breuning-Madsen, H. 2014. Soil compaction. Chapter ? in Stolte et al. (Eds.) Report on soil threats to soil quality. EU-project RECARE.

Schjønning, P., van den Akker, J.J.H., Keller, T., Greve, M.H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., Breuning-Madsen, H. 2015. Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction – a European perspective. Advances in Agronomy (accepted).

Van-Camp, L., Bujarrabal, B., Gentile, A.R., Jones, R.J.A, Montanarella, L., Olazabal, C., Selvaradjou, S-K. 2004. Soil Thematic Strategy. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection, Volume I-VI, EUR21319 EN/1.

 

Case Study experiment - Soil Salinization

1) Application of biological agents to increase crop resistance to salinity

The experiment tested the effectiveness of Trichoderma harzianum (a fungus) on tomato resistance to saline irrigation. This was a reference study (i.e. few samples but high stakeholder involvement) in order to provide reference for the experiment in a pilot study.  The pilot study simulateed the experiment in a fully monitored greenhouse in TUC, Chania.
Greenhouse
Setting up the greenhouse experiment

Final results:

While T. harzianum successfully reduced the effect of higher salinity irrigation and positively affected bioavailable nutrients concentration in the soil, its effect was limited, especially on subsequent cropping seasons. Results showed that soil quality was significantly affected by the irrigation treatment, and production loss due to saline irrigation was substantial (21-38%), especially for the marketable fraction of yield. Also, from a point onward, the increased taste characteristics associated with higher salinity came at a high cost for both yield and soil health. Furthermore, 2nd year crops showed an even higher productivity risk even under improved irrigation water quality and soil salinity mitigation measures. Moreover, modelling results show that future conditions will worsen the situation for greenhouses that already face a high salinity problem, either by rendering production nonfeasible or by increasing water demand by as much as 25%.

CreteResults

2) Rainwater Harvesting

The Crete researchers also explored the cost-effectiveness of installing rainwater harvesting systems in greenhouses.

Final Results

Regarding the cost-effectiveness of rainwater harvesting, high starting costs are a deterrent for its wider adaptation. Under saline irrigation, investing in a rainwater harvesting system rather than expanding the greenhouse cultivation area is more feasible since the increase in yield paid back is much faster. Some uncertainty remains regarding the feasibility of the system under subsequent dry hydrological years. Subsidizing the installation of rainwater harvesting systems can reduce these uncertainties and have a high added value for the local society and the level of provided ecosystem services.

Further details about this experiment can be found in the fact sheet HERE and in the project report HERE

Scientific Articles

Alexakis, D.D., Daliakopoulos, I.N., Panagea, I.S. and Tsanis, I.K., 2018. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto International33(4), pp.321-338. doi.org/10.1080/10106049.2016.1250826

I.N. Daliakopoulos, I.K. Tsanis, A. Koutroulis, N.N. Kourgialas, A.E. Varouchakis, G.P. Karatzas, C.J. Ritsema  (2016) The threat of soil salinity: A European scale review.  Science of the Total Environment http://dx.doi.org/10.1016/j.scitotenv.2016.08.177

Ioannis N. Daliakopoulos, Polixeni Pappa, Manolis G. Grillakis, Emmanouil A. Varouchakis, and Ioannis K. Tsanis (2016) Modelling soil salinity in greenhouse cultivations under a changing climate with SALTMED: Model modification and application in Timpaki, Crete.  Soil Science 181(6), pp.241-251.

I. S. Panagea1, I. N. Daliakopoulos, I. K. Tsanis, and G. Schwilch (2015) Evaluation of soil salinity amelioration technologies in Timpaki, Crete: a participatory approach  Solid Earth, 7, 177-190, DOI:10.5194/sed-7-2775-2015

For more information about the RECARE experiments, please contact: Ionnais Daliakopoulos This email address is being protected from spambots. You need JavaScript enabled to view it. 

Geographical Description

Timbaki

The Timpaki basin is connected to the western Messara plain by the Geropotamos River through the Festos gorge, close to the ancient Minoan palace of Phaistos and encompasses an area of 50 km2 located in the central-south area of Crete with a mean elevation of 200m. The main geological coverage of the basin includes conglomerates, clays, silts, sands and marls that are deposited unevenly. Furthermore, the main land use in the Timpaki basin is olive groves, horticulture and greenhouses. The climate ranges between sub-humid Mediterranean and semi-arid with mild moist winters (average temperature: 12oC and dry hot summers (average temperature: 28oC) while the mean annual precipitation is estimated to be 500mm.

Main soil threat

Yannis Daliakopoulos tympaki saltwater

Water supply in Greece is largely derived from groundwater sources. Intensive agriculture and high tourism activity are the two prime factors that strongly impact upon the available water resources of the island of Crete. The growth of agriculture in the Messara plain of Crete has had significantly impacted the water resources and ecosystem services of the area by substantially increasing water demand. This leads to the overexploitation of groundwater, which is a major resource for irrigation. This problem is exacerbated due to illegal water extraction, excessive irrigation, faulty pumping schemes and under prolonged dry climatic conditions, results in a negative water balance. This raises the major issue of concern being the seawater intrusion in coastal aquifers, such as the coastal Timpaki area. Simulation of seawater intrusion (left), has established that at the southern end of the coast, by the Geropotamos river alluvial recharge zone, the toe of the saltwater intrusion front lies 550 to 600 m from the coastline. At the northern end of the coast, the toe of the saltwater intrusion front is located 1500 m from the coastline.

Other soil threats

Irrigation affects ecosystem services of the area by substantially increasing water demand. This leads to the overexploitation of groundwater, which is a major resource for irrigation. This problem is exacerbated due to illegal water extraction, excessive irrigation, faulty pumping schemes and under prolonged dry climatic conditions, results in a negative water balance. This raises the major issue of concern being the seawater intrusion in coastal aquifers, such as the coastal Timpaki area. Simulation of seawater intrusion (left), has established that at the southern end of the coast, by the Geropotamos river alluvial recharge zone, the toe of the saltwater intrusion front lies 550 to 600 m from the coastline. At the northern end of the coast, the toe of the saltwater intrusion front is located 1500 m from the coastline.

Salinity is closely linked to other soil degradation issues. The decreased vegetation cover promotes vulnerability of soils to erosion and associated problems of reduced infiltration due to crusting and sealing of soil pores (Prager et al., 2011; Wong et al., 2010) as well as further loss of soil organic matter and nutrients. The subsequent loss of vegetation cover enhances the feedback of organic matter loss, erosion, and desertification. Messara Valley is also threatened by desertification due to poorly managed groundwater pumping for irrigation, which has caused a drop of the groundwater level by 20 m during the last decade.

Natural environment

Geology & Soils
In Crete, the large number of faults indicates an intense tectonic activity. The tectonic setting affected the integrity and continuity of the lithostratigraphic units and the faults bring in contact different lithostatigraphic units with different hydrogeological characteristics. Neogene deposits in Messara basin have undergone multidirectional extensional tectonic events with intervals of small, in duration and intensity degree of compression (Vafidis et al., 2013). The Timpaki sub-basin is separated from the rest Messara basin by Phaistos horst. It is filled with Neogene deposits, which are regarded as aquitard and it separates hydrogeologically the Timpaki basin from the eastern part of Messara basin. There is only an approximately 2km - wide passage through the horst, on which Geropotamos river flows towards the west. The Timpaki sedimentary basin was formed and evolved during Miocene. Pleistocene and Holocene deposits dominate in the Case Study (Panagopoulos et al., 2013). The Neogene formation crops out mainly to the north of the study area and underlies the Pleistocene deposits. Transmissivity values in the alluvium exceed 1×10-1 m2/sec while for the Lower Pleistocene the average value is about 1×10-2 m2/sec (Paritsis, 2005). The main geological coverage of the basin includes conglomerates, clays, silts, sands and marls that are deposited unevenly.

 

fig42

 Soil groups and materials (WRB) (left) and Land Use in the Case Study (Source: JRC) (right)

Land Use
There is no doubt that, with some exceptions, Crete was covered with forest before Neolithic times. Today, there is no natural forest left in the region (Bottema, 1980) but the natural landscape is dominated by scrublands, the typical Mediterranean garigue (Stobbelaar et al., 2000). The Cretan landscape has been cultivated since thousands of years, leading to 30% of its flora being linked to agriculture (CASCADE, 2013). Two main agro-ecological zones occur in the region: the hilly zone surrounding the plain, and the plain. Each zone displays different agro-ecological characteristics (Kabourakis, 1996) but also interacts with the other to the degree that it affects environmental variables such as water and fodder availability, soil preservation, fire hazard, etc. Major land use driving forces have been the growing importance of tourism and the impact of the European Common Agricultural Policy (CAP) (Kassa et al., 2002) that have also contributed to the decision of transform local marshes to cultivated land in the 80s (Stobbelaar et al., 2000).

Timpaki is a highly exploited area concerning the greenhouse cultivations, because of the favourable climatic conditions year round. Olive trees (43%), arable crops (39%) and horticulture (16%) comprise the main crops types with greenhouses playing a major role for the latter, also compared to the mother Municipality. Hellenic Statistic Authority (HSA, 2008) has identified a total of about 2,500 ha of cultivated land in Timpaki, while other estimates (Paritsis, 2005; Vafidis et al., 2013) estimate 7,800 ha of which 4,000 are irrigated almost exclusively by groundwater extraction. The majority of the 1,694 greenhouses found in the Prefecture of Heraklion (Tsakiridi, 2010) are in Timpaki and cover 3,580 m2 (Spyridaki, 2008). Crops are usually harvested twice a year and include non-indigenous species, mainly tomato (Solanum lycopersicum), cucumber (Cucumis sativus), zucchini (Curcubita pepo), eggplant (Solanum melongena), pepper (Capsicum anuumm) and green beans (Phaseolus vulgaris) (Thanopoulos et al., 2008).

AreaOlive treesArable crops1HorticultureCitrusVine treesTotal
Timpaki 1,100 (43%) 1,005 (39%) 401.5 (16%) 37 (1%) 3 (0%) 2,540.2
Phaistos 13,090 (79%) 1,805 (11%) 1,404.3 (8%) 187.5 (1%) 62.4 (0%) 16,549.2

 1Major arable crops include watermelons, melon and potatoes.

Climate
Messara Valley’s climate is classified as dry sub-humid according to UNCED (Paris Convention on Desertification, 1994) definitions and its hydrological year can be divided into a wet and dry season (Tsanis and Apostolaki, 2008). Crete has a typical Mediterranean island environment with about 53% of the annual precipitation occurring in the winter, 23% during autumn and 20% during spring while there is negligible rainfall during summer (Koutroulis et al., 2010). Figure below shows the mean monthly precipitation estimated for Timpaki using measurement from the local meteorological station and E-OBS data. For the available record, precipitation shows no significant trend and remains stable at an annual rate of 504 mm. The climate ranges between sub-humid Mediterranean and semi-arid with mild moist winters (average temperature: 12oC) and dry hot summers (average temperature: 23oC) while the mean annual precipitation is estimated to be 500 mm. The average winter temperature is 12oC (with a record minimum of -0.2oC) while in the summer it is estimated at 23oC (with a record maximum of 44oC).

fig44

Average annual (left) and mean monthly (right) precipitation and temperature
at Timpaki derived from the E-OBS dataset and corrected for bias

Hydrogeology

Due to the geological situation the hydrogeology of the Timpaki basin is strongly connected to the Messara plain, although the almost impermeable Phaistos horst restricts water flow to the gorge of the Geropotamos. Groundwater pumping levels range between 3 and 7 m a.s.l. At the central part of the plain, between Timpaki and the Klematianos stream, well yields 100 m3/h with specific capacities of 20 to 40 m3/h/m drawdown are observed (Paritsis, 2005). The climate conditions (Figure 4.4) illustrate the strong seasonal differences between the hot and dry summer months and the wet winter. On average, 65% of the precipitation is lost due to evapotranspiration, 25% infiltrates towards ground water recharge and 10% is lost as runoff to the sea (Paritsis, 2005). Since evaporation increases with temperature, the recharge due to precipitation is negligible during the summer, coinciding with peak pumping rates.

Drivers and pressures

In Crete, as in the rest of the country, high profitability of irrigated farming has led to over-exploitation of water resources. The amount of water allocated for irrigation is estimated to be 82% of the total consumption. In general, water consumption has increased by more than 4% per year (LEDDRA Project, 2013). Most of the total water consumption is used in agriculture for the irrigation of olive groves, vineyards and vegetables and the CAP has significantly affected cropland areas and land use types. In Crete, many marginal areas under natural vegetation were cleared and monocultures have been installed. These areas become particularly vulnerable to erosion due to inadequate soil protection and reduction of infiltration rates which follows loss of organic matter content and soil structure decline.

The main source of irrigation water in Messara is groundwater as there is little surface water flow outside the winter months (Vardavas et al., 1997). Groundwater is the key resource controlling the economic development of the region, and it comprises a component of the environment under siege as water demand is increasing with time. The increased demand of water, either for domestic or agricultural use, cannot always be met, despite adequate average precipitation amounts. Water imbalance is often experienced, due to temporal and spatial variations of precipitation, increased water demand during summer months and the difficulty of transporting water due to the mountainous areas. The average annual water demand of the area was estimated at 60.9 Mm3 in year 2004, which was allocated 96.6% for agriculture, 3.2% for domestic use, and 0.2% for industrial supply. The agricultural demand was estimated from the irrigated area with coefficients depending on the type of crops, the optimum irrigation dose as suggested by pertinent studies, and the applied irrigation system (i.e. 25 m3/ha for olive trees, 35 m3/ha for grapes, 65 m3/ha for greenhouses) (RoC, 2006). The sequential occurrence of dry years in the 1990s has led to more intensive pumping to meet the irrigation demands. As a result, in 2000 the groundwater level was 45 m below the surface. Furthermore, during the last three years, the runoff of the Geropotamos River is close to zero. Lately, there have been growing concerns over the possible depletion or deterioration of the groundwater quality in the basin due to intensive pumping beyond the safe yield of the basin (Tsanis and Apostolaki, 2008).

Rural migration has also had a significant impact on cropland and land management practices. Large scale migration from rural to urban areas took place in Greece after the 1950s and since then rural population has continued to decrease (Daliakopoulos and Tsanis, 2014). As a result, land was either abandoned or rented. These conditions facilitated the over-exploitation of rural land from the few remaining farmers who often adopted harsh methods, such as uncontrolled burning of shrubs, otherwise condemned by neighboring users (Kosmas et al., 2000). At the same time, the total population of Crete has increased in the last four decades. The rate of increase was especially high in the area of Heraklion, putting significant pressure on land for transformation from agriculture to residential or industrial uses. Apart from urbanization, mass tourism has also put a pressure on the Cretan landscape in the last few decades. The total number of tourists in Crete is currently estimated at 1.7 million/year and under a business as usual global population and climate projection this number is expected to rise to 2.7 million/year until the mid of the century (Grillakis et al., 2015a, 2015b). As a result and a means to improve their financial profile, in less productive areas, particularly along the coast, farmers have sold their land to developers for the construction of tourist infrastructure.

By joining the European Economic Community in 1981, Greek agriculture became subject to the Common Agricultural Policy (CAP). Up until 1992, the aim of the CAP was to increase production, and to provide cheap rural products accompanied by reasonable rural incomes. Accordingly, agricultural production was intensified and mechanized, unique endogenous varieties were replaced by hybrids aimed for the needs of globalized markets, and the adoption of monocultures led to some extent to the loss of self-sufficiency. In addition, regional development, infrastructure, spatial planning policies and the implementation of Integrated Mediterranean Programmes constitute the factors that have considerably affected the exploitation of natural resources (Daliakopoulos and Tsanis, 2014). Greek farmers have re-orientated crop production towards the globalised market and Greek agriculture is no longer based solely on the needs of the country or the European Union. As a result, the country has simultaneously lost its self-sufficiency in products such as cereals, fruits, and vegetables (Kosmas et al., 2013). On the other hand, Greek exports have yet to adapt to traders demands such as weekly price stabilization and reliable, short lead times (time from order to delivery) as well as international consumer needs for direct delivery of certified quality fresh produce, thus deterring interest for long-term partnerships that will secure increased export quantities, a bigger market share and a strong brand presence (Valogiannis, 2012).

Status of soil threat

The CLEARWATER Project (Vafidis et al., 2013) uses electrical / electromagnetic geophysical methods to map water salinisation in Timpaki. They have observed that water salinisation occurs at depths of 30m. The biggest problem appears north of the stream Klematianos. During the MEDIS project (Paritsis, 2005), simulations and modelling of the area using the SEAWAT model under the assumption of variable density showed that the base of the saltwater front at the southern end is 550-600 m from the coastline. Similarly, in the northern part of the base of the front is located 1,500 m from the shoreline. This water is often used for irrigation with detrimental effects for production and the soil. Figure below shows Electric Conductivity (EC) and groundwater level measurements (RoC, 2009) that reveal conductivities close or over 1 dS/cm that are considered “High” according to Richards' (1954) classification system and can potentially hinder agricultural production. Recent water sampling has located irrigation water of over 2.25 dS/m which is considered “Unsuitable for agricultural use”. Recent soil sampling has revealed soil salinity of over 50 dS/m in several greenhouses, rendering their soil “Very strongly saline” according to Richards' (1954) classification system.

fig45

Measurement of electric conductivity EC at selected wells of Timpaki (Source: RoC, 2009)

 Effects of soil threat on soil functions

The following table summarises and ranks the effects of soil salinity on the soil functions of Timpaki.

Functions of soilExplanationEffect
Biomass production Agricultural production is reduced or completely lost depending on the extent of soil salinisation. H
Environmental interactions Groundwater quality in the coastal zone is degraded possibly permanently. M
Gene reservoir/ Biodiversity pool Soil biodiversity in the coastal zone is reduced or completely lost. H
Physical medium/ Source of raw materials Raw materials and building capacity are not affected by salinisation. N
Carbon pool Effects are not known U
Cultural heritage Agriculture is an inseparable component of the Cretan tradition and any loss would greatly affect the landscape and the people. Nevertheless, the effect of soil salinisation can only be detected in the coastal zone other activities can also flourish. L

WOCAT Maps 

Maps on the current state of land use, soil degradation and soil conservation in the case study area have been produced using the WOCAT (World Overview of Conservation Approaches and Technologies) methodology

The steps of this process are as follows:

1) The area to be mapped is divided into distinctive land use systems (LUS).
2) The team gathers the necessary data on soil degradation and conservation for each LUS using a standardised questionnaire, in close consultation with local land users, and supported where possible by remote sensing or field data.
3) For each LUS, the soil degradation type, extent, degree, impact on ecosystem services, direct and indirect causes of degradation, as well as all soil conservation practices, are determined.
4) Once collected, the data is entered in the on-line WOCAT-QM Mapping Database from which various maps can be generated.

Following the principles of all WOCAT questionnaires, the collected data are largely qualitative, based on expert opinion and consultation of land users. This allows a rapid and broad spatial assessment of soil degradation and conservation/SLM, including information on the causes and impacts of degradation and soil conservation on ecosystem services.

More details about the methodology used to produce these maps and their interpretation can be found here.

Land Use (click on maps to expand)

 Greece Crete Timpaki land use typesS  Greece Crete Timpaki area trend land use systemS  Greece Crete Timpaki trend in land use intensityS

 Degradation 

The degree of degradation reflects the intensity of the degradation process, whilst the rate of degradation indicates the trend of degradation over a recent period of time (approximately 10 years).

Greece Crete Timpaki dominant types of soil degradationS Greece Crete Timpaki degree of degradationS Greece Crete Timpaki rate of degradationS

 Conservation Measures 

The "effectiveness" of conservation is defined in terms of how much it reduces the degree of degradation, or how well it is preventing degradation.  The Effectiveness trend indicates whether over time a technology has increased in effectiveness.

Greece Crete Timpaki dominant conservation measuresS Greece Crete Timpaki effectiveness of conservation measuresS Greece Crete Timpaki conservation effectiveness trendS

RECARE data repository

Data collected from the case study area for the project are held in a repository on the European Soil Data Centre (ESDAC) website hosted by Joint Research Centre (JRC).  Below is a list of the data held.

  • General info
  • Precipitation
  • Temperature
  • Soil Parameters
  • Soil Erodibility
  • K-Stoniness
  • Organic carbon content
  • Rainfall Erosivity
  • PESERA
  • Topsoil Organic Carbon
  • Wind Erodible Fraction

To access the data click HERE (currently only accessbile with  EUECAS login details)

Administrative and socio-economic setting

In administrative t,erms the Timpaki (or Tympaki) Municipal Unit (NUTS 5) has been merged in the municipality Faistos (NUTS 4) of the Heraklion regional unit (NUTS 3). The Region of Crete (NUTS 2), which includes Heraklion, is one of the 13 Regions of Greece and part of the GR4 First-level NUTS of the European Union (Aegean Islands, Crete or Nisia Aigaiou, Kriti). The Water Resources Department of the Prefecture of Crete (WRDPC) is the main managing authority in-charge of the water resources within the Messara basin and throughout Crete. Also, the Local Organizations of Land Reclamation (LOLR) has certain administrative authority in agreement with the decisions of the WRDPC. The EU WFD is a management directive that defines specific objectives, which have to be achieved by river basin management planners, mainly the WRDPC. The wells in the area are also controlled by the LOLR which regulates water use, e.g. pumping and irrigation rates and monitors water resources. The organization has extensive rights to establish rules and thresholds and as members, the farmers are entitled to vote and involve themselves in the LOLR’s decisions (Pipatpan and Blindow, 2005).

Contrary to many rural areas in Greece that face the effects of urbanization, the population of Timpaki has been steadily rising since the 50s. The main reason can be traced in the opportunities offered by the tourism sector in this coastal area (Figure 1.6a). On the other hand, contrary to the GDP of the Eurozone that largely rebounded after 2009, Greece has faced a prolonged crisis leading to little overall investments and financial contraction (Figure 1.6b).

Management options 

Despite the measures that have been imposed by Local Authorities for the protection of water resources since 1984, their implementation has faced difficulties mainly due to private wells (92% in total) (Kritsotakis and Tsanis, 2009). If the estimated reduction of pumping rates is are not achieved despite imposed measures, the water table will continue to decline and consequently, the yield of wells will be gradually reduce from the margins of aquifer towards the centre. In the case of a dry year’s sequence, the deficiency of water in the region has been estimated at the order of 50%. If this deficiency is not covered by alternative freshwater resources or reduction of the consumption it is almost certain that more seawater will be abstracted leading to acute water and soil salinity problems.

Reduced soil salinity in Timpaki may be achieved applying mainly three measures, with different degrees of feasiblitiy, as follows: (1) best management practices in agricultural practices, (2) construction of decentralised water harvesting systems, and (3) the water resources management infrastructure at Prefecture level. Every applied measure to alleviate the water stress should set as a target the reduction of abstractions volume, in order to achieve good quantitative status (Kritsotakis and Tsanis, 2009). It should be noted that, in the near future, the Moires basin will be supplied with about 3 Mm3 from the Faneromeni dam, provided that additional groundwater resources are not abstracted thought pumping.

Stakeholder involvement

Relevant end-users and local stakeholder groups include;

  • The Region of Crete Directorates of Agriculture Development, Environmental and Spatial Planning, Water Resources Management and Civil Protection

  • Local municipal departments

Stakeholders in the area are working together to develop various water resource management scenarios in order to: (a) secure a sustainable future for agriculture and tourism; and (b) mitigate the soil threat such as salinization. Scenarios that are currently being processed within the context of salinization mitigation include pumping limitation of the existing wells and the prohibition of further pumping stations drilling. Groundwater recharge is another management option to help improve groundwater quality and avoid soil salinization. Under these conditions, with projections of further groundwater level decreases and the augmented irrigation needs, exploitation of nearby surface dams and the reuse of wastewater represent a priority for water resource management within the Timbaki basin.

Gender and stakeholder workshop

In a significant number of small and medium-size agricultural enterprises in Timpaki, Crete, Greece, women are actively involved in collecting, packaging and the standardization of agricultural products. These tasks require increased organizing capacity, dexterity and perseverance. Male farmers are mostly committed to heavier manual agricultural labor, which requires greater physical strength and endurance. In recent years, motivated by the modern way of life, financial hardships and government incentives, a few women farmers are also actively involved in management and leadership tasks of agricultural enterprises. In the first stakeholder workshop, held in Timpaki, the agricultural sector was mostly represented by male stakeholders, whereas the local government sector, NGOs, the research sector and the local press did include female representatives as well. Values from local soil related ecosystem services (ESS) mentioned by women in the stakeholder workshop were health and conservation for the next generations. Concerning a “Sustainable land management approach against soil salinisation”, women stakeholders were enthusiastic about the potential of adopting production methods that would respect the local environment and promote nature conservation thus offering direct and indirect benefits for them as well as the next generations. Women seemed more aware of a circular economy including a better lifestyle for the producer and a healthier product for the consumer while respecting the environment. The men in the workshop mostly valued those approaches that promised to promote sustainability while preserving overall efficiency and profits. Thus male stakeholders seem to focus more on the realistic aspects of day-to-day challenges.

This web page is authored by:

Ioannis K. Tsanis and Ioannis N. Daliakopoulos (Deliverable 3.1) with contributions from Godert van Lynden, Zhanguo Bai, Thomas Caspari (Deliverable 3.2).

References

Bottema, S., 1980. Palynological investigations on Crete. Review of Palaeobotany and Palynology 31, 193–217.


CASCADE, 2013. CASCADE Project: CAtastrophic Shifts in drylands: how CAn we prevent ecosystem DEgradation? http://www.cascade-project.eu.


Daliakopoulos, I., Tsanis, I., 2014. Greece: Agro-pastoral over-exploitation and its implications in Messara Valley (Crete), in: CIHEAM Watch Letter No28 “Land Issues in the Mediterranean Countries.”


Grillakis, M.G., Koutroulis, A.G., Seiradakis, D.K., Tsanis, I.K., 2015a. Winners and losers in the European summer tourism under a 2 degrees warmer world. Climate Services (submitted).


Grillakis, M.G., Koutroulis, A.G., Tsanis, I.K., 2015b. The 2 degrees global warming effect to the summer European tourism through different indices. Climatic Change (submitted).


HSA, 2008. Annual Agricultural Statistics Report of the Hellenic Statistical Authority (ELSTAT). Hellenic Statistic Authority.


Kabourakis, E., 1996. Prototyping and dissemination of ecological olive production systems: a methodology for designing and a first step towards validation and dissemination of prototype ecological olive production systems(EOPS) in Crete. Landbouwuniversiteit Wageningen.


Kassa, H., Gibbon, D., Hult, E.A., Sodarak, H., Salih, M., Ramasoota, J., 2002. The Evolution of Rural Livelihood Systems, Including Options on Organic Farming: A Case Study from the Messara Plain of Crete. Agricultural Economics Review 3, 37–57.


Kosmas, C., Gerontidis, S., Marathianou, M., 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena 40, 51–68.


Kosmas, C., Kairis, O., Karavitis, C., Ritsema, C., Salvati, L., Acikalin, S., Alcalá, M., Alfama, P., Atlhopheng, J., Barrera, J., Belgacem, A., Solé-Benet, A., Brito, J., Chaker, M., Chanda, R., Coelho, C., Darkoh, M., Diamantis, I., Ermolaeva, O., Fassouli, V., Fei, W., Feng, J., Fernandez, F., Ferreira, A., Gokceoglu, C., Gonzalez, D., Gungor, H., Hessel, R., Juying, J., Khatteli, H., Khitrov, N., Kounalaki, A., Laouina, A., Lollino, P., Lopes, M., Magole, L., Medina, L., Mendoza, M., Morais, P., Mulale, K., Ocakoglu, F., Ouessar, M., Ovalle, C., Perez, C., Perkins, J., Pliakas, F., Polemio, M., Pozo, A., Prat, C., Qinke, Y., Ramos, A., Ramos, J., Riquelme, J., Romanenkov, V., Rui, L., Santaloia, F., Sebego, R., Sghaier, M., Silva, N., Sizemskaya, M., Soares, J., Sonmez, H., Taamallah, H., Tezcan, L., Torri, D., Ungaro, F., Valente, S., de Vente, J., Zagal, E., Zeiliguer, a, Zhonging, W., Ziogas, A., 2013. Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach. Environmental management. doi:10.1007/s00267-013-0109-6


Koutroulis, A.G., Tsanis, I.K., Daliakopoulos, I.N., 2010. Seasonality of floods and their hydrometeorologic characteristics in the island of Crete. Journal of Hydrology 394, 90–100.


Kritsotakis, M., Tsanis, I., 2009. An integrated approach for sustainable water resources management of Messara basin, Crete, Greece. Eur Water 27, 15–30.


LEDDRA Project, 2013. Land and ecosystem degradation and desertification. Land and ecosystem degradation and desertification.


Ledermann, T., Herweg, K., Liniger, H.P., Schneider, F., Hurni, H., Prasuhn, V., 2010. Applying erosion damage mapping to assess and quantify off-site effects of soil erosion in Switzerland. Land Degradation & Development 21, 353–366. doi:10.1002/ldr.1008


Ledermann, T., Schneider, F., 2008. Die Verbreitung der Direktsaat in der Schweiz. AgrarForschung 15, 372–377.


Panagopoulos, G., Giannakakos, E., Manoutsoglou, E., Steiakakis, E., Soupios, P., Vafidis, A., 2013. Definition of inferred faults using 3-D geological modeling techniques: a case study in Tympaki basin in Crete, Greece, in: Proceedings of the 13th International Congress on Bulletin of the Geological Society of Greece.


Paritsis, S.N., 2005. Simulation of seawater intrusion into the Tymbaki aquifer, South Central Crete, Greece. Report within MEDIS project, Study implemented on behalf of the Department of Management of Water Resources of the Region of Crete. Heraklion, Crete, Greece.


Pipatpan, S., Blindow, N., 2005. Geophysical Saltwater-Intrusion Mapping in Timbaki / Crete (Report within MEDIS (EVK1-CT-2001-00092): Towards sustainable water use on Mediterranean islands: addressing conflicting demands and varying hydrological, social and economical conditions). Institute for Geophysics, Westfälische Wilhelms-Universität, Münster.


Prager, K., Schuler, J., Helming, K., Zander, P., Ratinger, T., Hagedorn, K., 2011. Soil degradation, farming practices, institutions and policy responses: An analytical framework. Land degradation & development 22, 32–46.


Prasuhn, V., 2012. On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil and Tillage Research 120, 137–146. doi:10.1016/j.still.2012.01.002


Prasuhn, V., 2011. Soil erosion in the Swiss midlands: Results of a 10-year field survey. Geomorphology 126, 32–41. doi:10.1016/j.geomorph.2010.10.023


Prasuhn, V., Grünig, K., 2001. Evaluation der Ökomassnahmen - Phosphorbelastung der Oberflächengewässer durch Bodenerosion. FAL-Schriftenreihe 37.


Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. Soil Science 78, 154.


RoC, 2009. Status of aquifers in Crete. Region of Crete, Greece.


RoC, 2006. Status of aquifers in Crete. Region of Crete, Greece.


Schneider, F., Fry, P., Ledermann, T., Rist, S., 2009. Social Learning Processes in Swiss Soil Protection—The “From Farmer - To Farmer” Project. Hum Ecol 37, 475–489. doi:10.1007/s10745-009-9262-1
Schneider, F., Ledermann, T., Fry, P., Rist, S., 2010. Soil conservation in Swiss agriculture—Approaching abstract and symbolic meanings in farmers’ life-worlds. Land Use Policy 27, 332–339.doi:10.1016/j.landusepol.2009.04.007


Spyridaki, E., 2008. Preliminary study on the causes of death in areas Timpaki Messara (P. Heraclion) and Anogia Mylopotamos (P.Rethimno) in the period 1980-2006. Technical University of Crete, Greece.
Stobbelaar, D.J., Kuiper, J., van Mansvelt, J.D., Kabourakis, E., 2000. Landscape quality on organic farms in the Messara valley, Crete: Organic farms as components in the landscape. Agriculture, ecosystems & environment 77, 79–93.


Thanopoulos, R., Samaras, S., Ganitis, K., Gatzelaki, C., Kotaki, E., Psara, E., Kipriotakis, Z., Tzitzikas, E., Kalaitzis, P., Terzopoulos, P., Mpempeli, P., 2008. Local varieties of cultivated species in Crete emphasizing on vegetables, A potential for multiple use. Agriculture - Livestock.


Tsakiridi, C., 2010. Environmental assessment of the pepper cultivation, cultivation techniques in comparison with the method of life cycle analysis. Harokopio University.


Tsanis, I.K., Apostolaki, M.G., 2008. Estimating Groundwater Withdrawal in Poorly Gauged Agricultural Basins. Water Resources Management 23, 1097–1123. doi:10.1007/s11269-008-9317-x
Vafidis, A., Andronikidis, N., Hamdan, H., Kritikakis, G., Economou, N., Panagopoulos, G., Soupios, P., Steiakakis, E., Manoutsoglou, E., 2013. The Clearwater Project: Preliminary Results from the Geophysical Survey in Tympaki, Crete, Greece. Bulletin of the Geological Society of Greece 47.


Valogiannis, E., 2012. The difference in agricultural production cost among European and non-European countries–potato and tomato–market challenges for import-export. Middlesex University.
Vardavas, I.M., Papamastorakis, J., Fountoulakis, A., Manousakis, M., 1997. Water resources in the desertification-threatened Messara Valley of Crete: estimation of potential lake evaporation. Ecological modelling 102, 363–374.


Wong, V.N., Greene, R., Dalal, R., Murphy, B., 2010. Soil carbon dynamics in saline and sodic soils: a review. Soil use and management 26, 2–11.

Case Study Experiment - Soil Erosion

Terraces on mountainous agricultural land 

The creation of agricultural terraces on steep terrain can provide an effective solution to preventing soil erosion.  The experiment involves testing the effectiveness of maintenance / rehabilitation of dry-stone terraces.  It involves a participatory monitoring process.
 Cyprus degraded terraces  ExperimentalSite500x300
 mitigating erosion by water on mountainous agriculture land  Cyprus experimental site

 

Final Results

  • Fig3revCBased on two-year field measurements (Dec 2015 – Nov 2017), erosion from standing terrace sections was 3.8 times less than the erosion from collapsed sections. We also found that 43% of soil erosion occurred in two very intense rainfall events.
  • Although terrace construction and maintenance is labour-intensive with high establishment costs, it is a cost effective practice in the long-run when considering the soil erosion reduction.
  • The direct benefit of agricultural terraces is the harvested crop yields. According to land users, yields could be up to 20% higher in well-maintained terraces. Since the terraces are part of the cultural landscape, proper maintenance would also help restore and sustain the cultural landscape and rural mountain livelihoods.
  • Apart from preventing erosion and maintaining the productive capacity of soils in mountains, terraces also prevent erosion of unpaved rural roads. Sediment from the slopes also affects the water quality of streams and causes sedimentation in downstream areas. Thus, reducing erosion could lower water infrastructure maintenance costs.

Further details about this experiment can be found in the fact sheet HERE (EL)  and in the project report HERE

Scientific Articles

Camera, C., Djuma, H., Bruggeman, A., Zoumides, C., Eliades, M., Charalambous, K., Abate, D. and Faka, M., 2018. Quantifying the effectiveness of mountain terraces on soil erosion protection with sediment traps and dry-stone wall laser scans. Catena, 171, pp.251-264.  https://doi.org/10.1016/j.catena.2018.07.017

Christos Zoumides, Adriana Bruggeman, Elias Giannakis, Corrado Camera, Hakan Djuma, Marinos Eliades, Katerina Charalambous (2016) Community-Based Rehabilitation of Mountain Terraces in Cyprus. Published in Land Degradation & Development (2016) August 1 DOI: 10.1002/ldr.2586

Hakan Djuma, Adriana Bruggeman, Corrado Camera, Christos ZoumidesDjuma, H., Bruggeman, A., Camera, C. and Zoumides (2016) Combining qualitative and quantitative methods for soil erosion assessments: an application in a sloping mediterranean watershed, Cyprus

For more information about this experiment, please contact Adriana Bruggeman This email address is being protected from spambots. You need JavaScript enabled to view it.

Geographical description

The Peristerona Watershed covers an area of 112 km2 with the highest point of the watershed, Papoutsa Mountain, standing at 1540 m.  The Peristerona River flows from the northern slopes of the Troodos mountains into the Western Mesaoria plain. The river, which is deeply incised throughout the watershed, is formed by two main branches, whose confluence is near the entrance to the foothills. The river connects with the Serrachis River at the Masari recharge dam, just north of the United Nations Buffer Zone.

Location map

Location and Digital Elevation Model (DEM) of Peristerona Watershed

Based on geology, geomorphology and land use, four main units can be distinguished in the watershed, as described below. The upstream part of the watershed ranges between 1,540 and 900 m a.s.l. Most of the area is covered by sclerophylous forests and mountain agriculture on dry-stone terraces. Between 1100 and 900 m a.s.l., we find eight small communities with a total permanent population of 1,227 in 2011 (Cystat, 2012). The communities of Alona, Platanistasa, Polystypos, Livadia and Alithinou drain into the western river branch (Figure 3.2). Fterikoudi, Askas and Palaichori-Morphou form the eastern river branch. The midstream area ranges approximately between 900 and 500 m a.s.l. and is mainly covered by pine forests. The mean slope in the upstream and midstream area of the watershed exceeds 40%.

The foothills are formed by pillow lavas and outcrops of overlaying sedimentary formations. The elevation of this area ranges between 500 and 350-300 m a.s.l. and includes the communities of Agia Marina and Kato Moni. In the foothills, the mean local slope is significantly lower (20%). Downstream from the confluence of the hillslope streams, the elevation of the riverbed decreases from 440 m to 315 m over 8 km distance. Within the downstream Mesaoria plain, the mean local slope is lower (8%) and the riverbed slope is stable: along the 6.5 km upstream from Peristerona community, elevation decreases from 315 m to 210 m. A series of check dams have been established across the river bed to slow the stream flow and increase groundwater recharge.

Main soil threat

The main soil threat in the mountainous areas of Cyprus is erosion from the steep mountainous terrane. Around the small rural communities in the mountains, large areas have been converted into agricultural terraces. Similar to many other mountain communities in Cyprus, the population of the communities in the upstream areas of Peristerona Watershed has decreased substantially over the past 30 years. As a result, many of the mountain terraces are no longer cultivated and terrace walls are not maintained, causing sometimes a domino effect of collapsing terraces. In some places, nature is taking over and the degradation of terrace walls and soil erosion is more gradual than on the poorly vegetated terraces.

The shallow and stony soils of the highly sloping midstream areas of the watershed are covered by forests. The state forests that cover the largest part of this area are dominated by pine trees (Pinus brutia). These forests are affected by dieback during drought years. The forest is also susceptible to fires during the long hot and dry summers. These problems may become worse as a result of climate change. After fires the land is vulnerable to soil erosion.

Other soil threats
The collapse of mountain terraces and ongoing erosion could eventually result in desertification. In the midstream areas, forest fires may also lead to desertification.

Natural Environment

Geology & Soils
The Troodos Ophiolite is a fragment of a fully developed oceanic crust, created during the collision of the Eurasian and African plates. The stratigraphy of the ophiolite shows a topographic inversion, related to the way the ophiolite was uplifted (diapirically) and later eroded (Geological Survey Department, 2014).

In the upstream and midstream area of the Peristerona Watershed, the geology is dominated by the diabase (65%) and the basal group (19%) formations, intrusive rocks of the Troodos ophiolitic sequence that form a heterogeneous fractured aquifer systems (Mederer, 2009). In the upstream areas we also find gabbros and plagiogranates (plutonic rocks) with relatively high hydraulic conductivities (Figure 3.3a, b).

The Troodos foothills correspond to the transition area between the fractured diabase and basal group formations (49%) and the overlying, impermeable pillow lavas of the ophiolitic sequence (43%). On the downstream end of the foothills we find the sedimentary Pakhna formation (pale yellow chalks). In this unit we find old copper mines just east and west of the watershed in Mitsero and Xyliatos, respectively. In the Mesaoria plain, the geology mainly consists of river alluvium (58%) which overlays the Pleistocene member of the Circum Troodos sedimentary basin (fanglomerate, 34%). This member formed by marl grading upward into clays, silt, sandstone and gravel.

The soils of the three upstream units are shallow and stony. The majority of the soils in these areas are classified as eutric-lithic-leptosols and eutric-skeletic-regosols (Figure 3.3d), on the 1:250,000 soil map (DoA, 1999; Hadjiparaskevas, 2005). The valleys and the terraced areas around the communities are classified as eutric-cambisols with eutric-anthropic regosols. In the downstream areas, the river valley is classified as vertic-cambisols with calcaric-regosols, while the soils on the plateau are calcic- and chromic-vertic luvisols.

Land Use
The inhabitation of the upstream area goes back to the Chalkolithic era. Large monolithic stones and a baityl stone, remnants from a tomb or sanctuary from a heliolithic civilization (2000 BC) have been found in Fterikoudi (Psillita Ioannou, 2013). There is also a prehistoric copper mine in a steep hillslope at the southern edge of Fterikoudi and Palaichori. Turning to the current age, the area of cultivated and fallow crops land in the watershed’s communities is approximately 3500 ha. The Census of Agriculture (Cystat, 2012) reported 3,273 ha in 2010, while the land owners registered 3,546 ha in good condition for Single Area Payment support (CAPO, 2013). In the upstream areas the main crop is wine grapes, followed by almonds, both grown on terraces. Almost all crops are grown on bench terraces. However, the wine grapes are also grown on broader sloping terraces with shallow soils.

In the foothills and downstream both rainfed and irrigated crops are found. Cereals, especially barley, comprise the main rainfed crop. Barley is generally grown for animal feed and often harvested and bailed whole, especially in dry years. Irrigated crops are found in Agia Marina, where they receive water from the nearby Xiliatos dam (transboundary). Along the river, crops (olives, vegetables) are often irrigated with water abstracted from the alluvial aquifer. In the plain downstream from Peristerona community, crops are irrigated with groundwater.

Vines terraces

 Wine grapes grown in terraces in Polystipos, June 2014

In the upstream area we also find sclerophylous vegetation, especially the Cyprus golden oak (Quercus alnifolia). These trees contribute to soil stabilization and prevent soil erosion due to their ability to colonize steep rocky hills (Loizides, 2011). The steep sloping midstream areas are mainly covered with coniferous forests (Pinus brutia), which are part of the Adelphi state forest. Grazing of the forested areas was banned during British colonial rule in the late 19th century (Butzer and Harris, 2007). The state forest boundaries are marked with distinguished white cairns (Given, 2002).

Main crops grown in the communities in Peristerona Watershed in 2013 (CAPO, 2013)

UpstreamArea [ha]Foothills and downstreamArea [ha]
Wine Grapes 112 Cereals (excl. durum wheat) 1,095
Almonds 105 Fallow 543
Olives 20 Durum wheat 446
Hazelnuts 13 Potatoes 272
Apples 13 Vegetables and melons 234
Cherry 9 Legumes and fodder crops 182
Fruit and nut trees 8 Olives 158
Vegetables and potatoes 7 Citrus 158
Fallow 3 Almonds 90
Table grapes 2 Fruit and nut trees 27

Climate
Cyprus has a Mediterranean climate, with rain during the October to May, wet winters and very hot dry summers. The climate of Peristerona Watershed is classified as semi-arid, while the mountains at higher elevations in the watershed are classified as dry sub-humid, according to UNEP (Middleton and Thomas, 1997). The average annual precipitation (1980-2010) ranges between 754 mm at Polystypos in the mountains (1,100 m a.s.l.), 405 mm at Panagia Bridge in the foothills, to 270 mm at Peristerona in the plain (200 m a.s.l). The period between December and February is the rainiest. Little rain falls during the June to September. Daily precipitation extremes of 160 and 170 mm have been observed in the past 10 years. Average monthly daily minimum temperature (1980-2010) in the foothills at Panagia Bridge is 2 ⁰C during the coldest month of January. Daily maximum temperatures (1980-2010) in July and August average to 34 ⁰C.

Hydrology and hydrogeology
The Peristerona River recharges the underlying formations through its coarse gravel and cobbled streambed. The river is especially wide, compared to its current day flow, in the downstream area of the watershed (Butzer and Harris, 2007). Surface runoff measured by the Water Development Department at the Panagia Bridge weir in the foothills averaged 11.86 Mm3/yr, for the years 1980-2010. The lowest annual runoff was 1.85 Mm3 in 2007/08 and the highest was 25.94 Mm3 in 2003/04 (Sep-Aug hydrologic years). The maximum one day flow during this period was 58 m3. The river is usually dry during August to October. The runoff constitutes on average 23% of the precipitation over the up-and midstream watershed (Le Coz et al., 2014). The Western Mesaoria Upper Aquifer in the downstream plain is the largest and the most important groundwater reservoir in Cyprus (UNDP, 1970). The indirect recharge of this aquifer through the river alluvial is crucial (UNDP, 1970). Therefore, a large recharge dam (Masari) was built at the confluence with the Serrachis River in 1973 (Konteatis, 1974). The recharge dam is located in the area that is currently outside the control of the Cyprus government. To improve groundwater recharge for the water supply of the downstream communities upstream of Masari dam, large gabion weirs have been constructed across the wide streambed. The structures slow down the flow and enhance groundwater recharge. The recharge structures quickly fill up with sediment, especially upstream of Peristerona community. This obviously reduces the groundwater recharge. The sediment is removed by the Water Development Department on a regular basis.

Drivers and Pressures

Various driving forces have affected the communities and land use in Peristerona Watershed over the past 30 years. Considering the small size of most agricultural holdings, farming does no longer form a major source of income. Agricultural incomes have also been affected by lower crop prices and changes in agricultural subsidies, as well as the removal of trade-barrier protectionism following Cyprus’ accession to the European Union in 2004. Data from the past four agricultural censuses show a decline in the crop area of the watershed’s communities from 1985 to 2010. The decline is especially clear for permanent crops (vines, fruit and nut trees) in the mountain communities. It should be noted that 2003 presents somewhat of an anomaly. Crop area increased due to high rainfall, which allowed more land to be irrigated, and due to expectations for agricultural support, as a result of Cyprus’ accession to the EU in 2004.

The 2010 agricultural census recorded 591 agricultural holdings in the eight upstream communities and an average holding size of 1.0 ha (Cystat, 2014). The number of holdings in the four foothill and downstream communities is 733 and the average size is 3.5 ha. The majority of the holdings in the watershed (76-77%) also reported owning livestock. Obviously, these small farms do not provide sufficient income and many families farm only part-time. On average, 50% of the Cypriot farm holders and their family members do not have agriculture as their primary or sole occupation (Cystat, 2014).

Grazing of small ruminants (sheep and goats) affect the vegetation cover and thereby the land’s susceptibility to erosion. However, the current number of animals in the upstream farms is small, except for chickens. The census of 2010 (Cystat, unpublished data), recorded almost 24,000 chickens in the upstream communities, but 95% of these are in Palaichori (42 holdings). There are 284 goats, distributed over 19 holdings, upstream. Intensive livestock farms are found in the foothills and downstream. Kato Moni, Orounda and Peristerona communities count ten pig holdings totalling nearly 60,000 pigs. There are also almost 3,000 sheep (18 holdings) and 3,000 goats (23 holdings) in the four foothill and downstream communities. Many livestock farms dump their manure on nearby fields, degrading the vegetation with nutrient overloads, polluting the groundwater and streams, and emitting greenhouse gasses (NOx, NH3, CH4).

Limited economic opportunities and services in the mountain communities, combined with affordable loans, housing and jobs has led to migration to urban centres. Over the past three decades, the total population in the mountain communities has more than halved. The population in the foothills and downstream areas has remained relatively constant (Figure 3.7, left). These communities have a larger number of economic activities, while people also commute to the urban area of Nicosia.

Precipitation over Cyprus has undergone an important reduction in the recent past, showing a step-change around 1970 (Rossel, 2001). Average precipitation over the Republic decreased from 541 mm during 1901/02-1969/70 to 469 mm during the past 44 years (Department of Meteorology, 2014). Results of numerical climate models indicate that a further decrease is eminent, but also that there is a large uncertainty attached to these projections. Droughts have also affected agriculture. In the upstream area, many terraces are irrigated, using springs, surface water diversions, small reservoirs and groundwater. In severe drought years, such as the 2013/2014 season, stream flow does not reach the check-dams that enhance groundwater recharge in the downstream area. Thus, a sequence of drought years may have severe consequences for the water supply of the downstream communities.

Status of soil threat

Most European soil threat studies do not cover Cyprus. No erosion research has been conducted in Peristerona Watershed in the past. Zaimes et al. (2012) measured one season of erosion from 10 by 5 m experimental plots on highly sloping land (35-40%) in a pine forest (Pinus brutia) at a higher elevation in the Troodos Mountain. They found an annual soil loss of 21 kg/ha for the 20 most intense precipitation events, under an annual precipitation of 1,073 mm. Djuma et al. (2014) measured the sediment deposition at the Orounda check-dam in the downstream area of Peristerona Watershed in the summer of 2013. Assuming a 15% trap efficiency, they estimated an average sediment yield of 1 ton/ha over the watershed. Degradation of terrace walls can be observed throughout the watershed (Figure 3.6). There are also areas where natural vegetation has taken over the abandoned agricultural terraces. The vegetation protects the soil against the direct impact of rain events. However, the lack of terrace maintenance after large storm events still results in a gradual degradation.

Degraded terraces300x200Abandoned, degraded terraces downstream of Askas, December 2011

Abandoned, degraded terraces downstream of Askas, December 2011

WOCAT Maps

Maps on the current state of land use, soil degradation and soil conservation in the case study area have been produced using the WOCAT (World Overview of Conservation Approaches and Technologies) methodology 

The steps of this process are as follows:

1) The area to be mapped is divided into distinctive land use systems (LUS). 2) The team gathers the necessary data on soil degradation and conservation for each LUS using a standardised questionnaire, in close consultation with local land users, and supported where possible by remote sensing or field data. 3) For each LUS, the soil degradation type, extent, degree, impact on ecosystem services, direct and indirect causes of degradation, as well as all soil conservation practices, are determined. 4) Once collected, the data is entered in the on-line WOCAT-QM Mapping Database from which various maps can be generated.

Following the principles of all WOCAT questionnaires, the collected data are largely qualitative, based on expert opinion and consultation of land users. This allows a rapid and broad spatial assessment of soil degradation and conservation/SLM, including information on the causes and impacts of degradation and soil conservation on ecosystem services.

More details about the methodology used to produce these maps and their interpretation can be found here.

Land Use (click on maps to expand)

Cyprus Peristerona land use types Cyprus Peristerona area trend land use system Cyprus Peristerona trend in land use intensity

Degradation

The degree of degradation reflects the intensity of the degradation process, whilst the rate of degradation indicates the trend of degradation over a recent period of time (approximately 10 years).

Cyprus Peristerona dominant types of soil degradation Cyprus Peristerona degree of degradation Cyprus Peristerona rate of degradation

Conservation measures

The "effectiveness" of conservation is defined in terms of how much it reduces the degree of degradation, or how well it is preventing degradation.  The Effectiveness trend indicates whether over time a technology has increased in effectiveness.

Cyprus Peristerona dominant conservation measures Cyprus Peristerona effectiveness of conservation measures Cyprus Peristerona conservation effectiveness trend

RECARE data repository

Data collected from the case study area for the project are held in a repository on the European Soil Data Centre (ESDAC) website hosted by Joint Research Centre (JRC).  Below is a list of the data held.

  • General info
  • Precipitation
  • Temperature
  • Soil Parameters
  • Soil Erodibility
  • K-Stoniness
  • Organic carbon content
  • Rainfall Erosivity
  • PESERA
  • Topsoil Organic Carbon
  • Wind Erodible Fraction

To access the data click HERE (currently only accessbile with  EUECAS login details)

Effects of soil threat on soil functions

The table below summarises and ranks the effects of soil erosion on the soil functions in the Peristerona Watershed.

Functions of soilExplanationEffect
Biomass production Loss of soil and terraced land in the steep and stony mountain environment reduces the capacity of the land to grow crops and natural vegetation. H
Environmental interactions Soil erosion and terrace degradation increases surface runoff, accelerates further erosion, causes downstream sedimentation and flood events from the steep mountainous terrain. H
Gene reservoir/ Biodiversity pool Soil losses will negatively affect biodiversity of microbial communities, agricultural species, natural vegetation, insects, birds and reptiles. Dry-stone terrace walls also provide a habitat for different species of fauna and flora and collapse of these walls reduces such habitats. On the other hand, the mixing up of soils as a result of landslides can also rejuvenate soils, favouring new biological and ecological systems development and fast restoration. H
Physical medium/ Source of raw materials Due to their limited quantities and loamy textures, mountain soils are not so critical as physical medium or source of raw material. L
Carbon pool The mountain terrace soils contribute to carbon sequestration (e.g., Cohen et al., 2012). M
Cultural heritage The terraced landscapes form part of the cultural heritage of Cyprus. They are also inherently linked to the production of traditional Cypriot products such as zivania, palouze, soutzoukos and spoon sweets (e.g. walnut). Large monoliths and a baityl (2000 BC) have been found in the soil in Fterikoudi (Figure 3.1). H

 

Administrative and socio-economic setting

The institutions that contribute to the governance of natural resources in Cyprus are the various departments of the Ministry of Agriculture, Natural Resources and Environment (MANRE), especially the Agriculture Department, Forestry Department and Department of Environment. The Cyprus Agricultural Payment Organization (CAPO), who handles all agricultural support measures, and other organizations related to the CAP, i.e., the National Rural Network and the Institute for Rural and Regional Development (IAPA) could also play a role. The Forestry Department supports the implementation of CAP measures 2.4 and 3.2 (afforestation of agricultural and non-agricultural land). The Department of Environment is responsible for the Natura2000 Vounokorfes Madaris-Papoutsas site that covers part of the forests in the upstream and midstream area of the watershed. The Water Development Department is the national authority responsible for all water resources. The Cyprus Geological Survey Department (MANRE) monitors groundwater resources and groundwater quality. The local community councils, especially the community leaders, govern the communities, including water supply. The mountain communities are also represented by the Mountainous Communities Committee. The most important policies that affect the land use and management in the watershed are the Common Agricultural Policy (CAP), including the National Strategy Plan and the Rural Development Plan (DoA, 2012); the Water Framework Directive, especially the new water pricing policy (WDD, 2010); the national Forest Policy (DoF, 2013); and the national strategy for adaptation to climate change (DoE, 2014), which is still under consideration by the Parliament. 

Management options

Land management such as the establishment of terraces and contour banks has always received attention in the rural mountains of Cyprus. In the early half of the 20th century, land owners could form Soil Conservation Divisions for carrying out large scale soil conservation works, with the Government subsidizing up to half of the cost (Christodoulou, 1959). Under a comprehensive program for soil conservation and land management, supported by FAO and the World Food Program, 1000 ha of land has been bench-terraced by Government or contractors, each year, since 1968 (Michaelides, 1988).

Since 2004, when Cyprus entered the EU, supportive measures in the form of subsidies were given through the Rural Development Programme (RDP). During the period 2004-2006, subsidies were given for the maintenance of 43,500 m of terraced walls at a national level. In the following period (2007-2013), there were no specific measures for terraces. However, farm activities were indirectly related and subsidised through measures such as the Single Area Payment Scheme (including additional support for least favourable areas), preservation of traditional vineyard varieties and endangered species (Sub-measure 2.3.5) and agri-environmental obligations for traditional trees and bushes (Sub-measure 2.3.6). In addition, supportive measures were given to minimise land abonnement risks, such as the afforestation of agricultural land (Sub-Measure 2.4.1). Experience has shown that these measures were not sufficient to implement or maintain indigenous technologies such as terraces, or to proceed to afforestation of agricultural land. Regarding the former, for instance, stakeholders complained about the complexity of application procedures and the limited information provided about the existing measures. In the case of the latter, there were no afforestation projects in the watershed, which is indicative of the lack of interest and the low financial incentives.

In addition to the above measures, a national program for supporting the wine sector has been operating in the past two years, with specific measures and guidelines for terrace maintenance (i.e. Sub-measure 1b3: construction and maintenance of terraces). However, this initiative requires well maintained vineyards, which limits the eligibility for most grape plots in the watershed from receiving subsidies.

In the forthcoming RDP period (2014-2020), there is a number of measures related to mountain farming and terraces maintenance, including agro-environmental and investment measures. Nonetheless, the RDP has not yet been approved by the European Commission.

Stakeholder involvement

Agri Terraces

Relevant end-users and local stakeholder groups include:

• Agriculture Department (District Offices)
• Forestry Department
• Cyprus Agricultural Payment Organization
• Rural mountain communities (community councils)
• Local schools and youth organizations

The project will organize stakeholder meetings with the rural mountain communities, agriculture and forestry department officers to identify sustainable options for mountain terrace management and innovative mechanisms for achieving this. The project will also involve agro-tourism businesses and organize meetings with local schools. At a climate change scenario workshop at a local high school recetly the students were very motivated to work for their communities; nearly half of the 39 students envisioned themselves living in the mountains 30 years from now. The project will also hold meetings with agricultural officials to analyze current and potentially new support measures.

Gender and stakeholder workshops

The participatory activities are split up into stakeholder workshops (1st held in 2014 and 2nd in 2015) and Mountain Terrace Rehabilitation Workshops, held in 2015 on 14 July, 12 October and 14 November. The Terrace Rehabilitation Workshops are announced on Facebook and by posters and flyers in the mountain communities. They have attracted people from all over the island and of all ages! Women attended all the workshops, although about two thirds are men, and in the terrace rehabilitation more men than women showed up to undertake the heavy work. Still both women and men do technical, practical and scientific tasks.

”Good vibes at the 2nd Participatory Workshop, (22 July 2015) Cyprus' RECARE case-study site! We had 25 stakeholders (excluding ourselves) with local and external experts for each of our SLM option. Overall, a successful event; we've reached a consensus on what and how we are implementing next, after voting and scoring our criteria and SLM options!” https://www.facebook.com/groups/RECARE/

 This web page is authored by:

Adriana Bruggeman, Corrado Camera, Hakan Djuma, Marinos Eliades, Elias Giannakis and Christos Zoumides from Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus

With contributions from: Ioannis K. Tsanis and Ioannis N. Daliakopoulos (Deliverable 3.1) and Godert van Lynden, Zhanguo Bai, Thomas Caspari (Deliverable 3.2).

References

Butzer, K.W., and Harris, S.E, 2007. Geoarchaeological approaches to the environmental history of Cyprus: explication and critical evaluation. Journal of Archaeological Science 34, 1932-1952.
Christodoulou, D., 1959. The evolution of the rural land use pattern in Cyprus. The world land use survey, monograph 2: Cyprus. Geographical Publ. Limited, Bude, Cornwall, UK.
Cohen, D.R., Rutherford, N.F., Morisseau, E., Zissimos, A.M., 2012. Geochemical patterns in the soils of Cyprus. Science of the Total Environment 420, 250-262.
Cyprus Geological Survey, 1995. Geological map of Cyprus, scale 1:250,000, map. Cyprus Geological Survey, Nicosia, Cyprus.
CyStat, 2012. Census of population 2011. http://www.mof.gov.cy/mof/cystat/statistics.nsf/ populationcondition_22main_en/populationcondition_22main_en?OpenForm&sub=2&sel=1
CyStat, 2014. Census of agriculture 2010. Agricultural statistics, Series 1, Report No. 8. Printing Office of the Republic of Cyprus, Nicosia, Cyprus.
Department of Agriculture (DoA), 1999. Soil Map of Cyprus, scale 1:250,000. Soil and Water Use Section, Department of Agriculture, Nicosia, Cyprus.
Department of Agriculture (DoA), 2012. Rural Development Plan 2007-2013 (5th amendment, Feb. 2012). Department of Agriculture, MANRE, Nicosia.
Department of Environment (DoE), 2014. Proposed Plan for Cyprus’ adaptation to climate change. Department of Environment, Ministry of Natural Resources, (MANRE), Nicosia, National Technical University of Athens, and National Observatory of Athens. http://www.moa.gov.cy/moa/environment/environment.nsf/0/0FB847EDE909242FC2257D08003C0061/$file/AdaptToClimate_v2014.pdf
Department of Forests (DoF), 2013. Forest Policy. Department of Forests, MANRE, Nicosia. http://www.moa.gov.cy/moa/fd/fd.nsf/All/C858586D3F864936C2257B1900238655/$file/ForestPolicy-Jan2013.pdf
Department of Meteorology. 2014. Climatological information. http://www.moa.gov.cy/moa/MS/MS.nsf/ DMLclimatological_en/DMLclimatological_en?OpenDocument
Djuma, H., A. Bruggeman, C. Camera. 2014. Assessment of sediment yield in a sloping Mediterranean watershed in Cyprus, Geophysical Research Abstracts, Vol. 16, EGU2014-7716.
Geological Survey Department, 2014. http://www.moa.gov.cy/moa/gsd/gsd.nsf/dmlTroodos_en/ dmlTroodos_en?OpenDocument
Given, M. 2002. Maps, fields, and boundary cairns: demarcation and resistance in colonial Cyprus. Internat. J. Historical Archaeology 6(1): 1-22.
Hadjiparaskevas, C., 2005. Soil survey and monitoring in Cyprus, European Soil Bureau-Research Report 9, 97-101.
Konteatis, C.A.C., 1974. Dams of Cyprus. Ministry of Agriculture, Natural Resources and Environment, Water Development Department, Nicosia, Cyprus.
Le Coz, M., Bruggeman, A., Camera, C., Lange, M.A. 2014. Impact of variability in the precipitation rate on hydrological processes in Mediterranean mountain catchments. (In Review).
Loizides, M., 2011. Quercus Alnifolia: the indigenous Golden Oak of Cyprus and its fungi. Field Mycology, 12 (3), p. 81-88.
Mederer, J.M., 2009. Water resources and dynamics of the Troodos igneous aquifer-system, Cyprus. Thesis (PhD). University of Wurzburg.
Michaelides, P. 1988. The Cyprus land terracing programme: costs and benefits. In: Zomenis SL. et al. (ed.) Proceedings - Workshop on conservation and development of natural resources in Cyprus - case studies - soils - groundwater - mineral resources. Ministry of Agriculture and Natural Resources, Cyprus and Federal Institute for Geosciences and Natural Resources, W. Germany, 13-18 Oct 1986, Nicosia. p.131-138.
Middleton, N.J., Thomas, D.S.G. (Eds), 1997. World Atlas of Desertification, UNEP. Arnold, London.
Psillate Ioannou, P., 2013. Fterikoudi. Speaking monuments. Fterikoudi Friends Association, Cyprus.
Robertson, A.H.F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65: 1-67
Rossel, F. 2001. Changes in recorded precipitation. In: 2002. Re-Assessment of the water Resources and Demand of the Island of Cyprus. Food and Agriculture Organization of the United Nations (FAO) and Water Development Department, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus.
United Nations Development Program (UNDP), 1970. Survey of groundwater and mineral resources, Cyprus. United Nations, New York, 231 p.
Water Development Department (WDD), 2010. Cost Assessment and Pricing of Water Services in Cyprus (Summary). Water Development Department, MANRE, Nicosia.
Zaimes, G.N., Emmanouloudis, D., Iakovoglou, D., 2012. Estimating soil erosion in Natura 2000 areas located on three semi-arid Mediterranean islands. Journal of Environmental Biology 33, 277-282.

 

.

Case Study Sites

 Click on the map below to find out more about RECARE's case study sites
Case Studies

Project Partners

ABOUT US

RECARE was a multidisciplinary research project of 27 different organisations that assessed the threats to Europe's soils and identified innovative solutions to prevent further soil degradation.  The project ran from 2013 - 2018.

Academic Contact
Professor Coen Ritsema 
Wageningen University
E: coen.ritsema[AT]wur.nl

Media Contact
Dr Matt Reed
E: mreed[AT]glos.ac.uk

Funding

Funded by the European Commission FP7 Programme, ENV.2013.6.2-4 ‘Sustainable land care in Europe’.

EU grant agreement: 603498.

Project officer: Maria Yeroyanni.

European Commission logo